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a b s t r a c t

Considerable effort has been expended in the EDA community during the past decade in trying to cope
with the so-called statistical timing problem. In this paper, we not only present a fast and approximate
gate delay model called stochastic logical effort (SLE) to capture the effect of statistical parameter
variations on the delay but also combine this model with a previously proposed transistor level smart
Monte Carlo method to construct ISLE timing yield estimator. The results demonstrate that our
approximate SLE model can capture the delay variations and ISLE achieves the same accuracy as the
standard Monte Carlo estimator with a cost reduction of about 180� on the average for ISCAS’85
benchmark circuits and in the existence of both inter- and intra-die variations.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Decreasing sizes of transistors result in manufacturing of digital
integrated circuits (IC) to become much more difficult and prone
to variations of parameters like transistor gate length, threshold
voltage, etc. Performance (speed) variability due to the statistical
parameter variations and environmental fluctuations has become
more significant. IC designers need to estimate the timing yield
and optimize their design accordingly until it reaches the desired
yield before manufacturing. A survey [1] in 2011 by Solido Design
Automation over 486 IC design professionals shows that two-
thirds of designers and managers name variation-aware design as
a top segment where technology advancement is needed.

In traditional VLSI design methodologies, designers prefer
using Spice tool for detailed transistor level (TL) circuit simulations
as a final verification before timing sign-off because of its accuracy.
One would ideally like to perform a similar transistor-level, but
statistical timing analysis for timing yield estimation. According to
the above survey, more than half of the participant IC designers
and managers want Spice simulators to be variation aware in the
first place. Taiwan Semiconductor Manufacturing Company
(TSMC) has already announced the insertion of transistor-level
statistical timing analysis into its reference design flow in order to
enhance timing accuracy [2]. There has been intense academic
research on statistical timing analysis and timing yield estimation
topics especially in the last decade [3,4]. The researchers have to

cope with hard problems like modeling inter- and intra-die
variations with spatial correlations, accurate delay approximations
without solving the actual non-linear and differential delay
equations, propagation of the non-Gaussian random variables,
etc. Previously negligible problems have become more and more
important with the shrinking technology. Today, intra-die varia-
tions are at least as important as inter-die variations [5]. The
combination of all these problems either increases the computa-
tional complexity of the solution or decreases the accuracy of the
resultant timing yield estimate. Making too many assumptions to
decrease complexity results in far-off estimates. The most accurate
approach in statistical timing is the Monte Carlo (MC) method
based on costly transistor level Spice simulations, which is the
called golden method, however it is computationally too complex
to be applicable.

The main contributions of this paper can be summarized as
follows: a variation aware delay model, stochastic logical effort
(SLE), is proposed to capture the tendency of a gate's delay with
respect to the random device parameters. The characterization of a
standard cell library to prepare it for SLE delay computation and
efficient methods for the computation of SLE model parameters
are presented. SLE is combined with a previously proposed
importance sampling based timing yield estimation technique
[6] to build a new estimator called ISLE. The theoretical error of
the resultant ISLE estimator is derived in detail. The empirical tests
over ISCAS’85 benchmark circuits considering both inter- and
intra-die variations with spatial correlations show the accuracy
of the SLE method. The results show that ISLE timing yield
estimation is about 180 times faster on the average than the
traditional methods with the same accuracy. ISLE is not meant to
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be a replacement of the less accurate but faster statistical static
timing analysis methods, but instead a complementary method to
be used as a final verification for the statistically critical paths in
the circuit.

In Section 2, we present the variation aware gate delay model
SLE. In Section 3, ISLE yield estimator is explained and a precise
theoretical error analysis is given. Finally in Section 4, we present
the experimental results and the computational cost.

2. Variation aware gate delay model: stochastic logical effort
(SLE)

Section 2.1 provides an overview of the well-known logical
effort approach. In Section 2.2, we introduce SLE for approximat-
ing circuit delay in the presence of statistical variations. Section 2.3
explains the extraction of the model parameters for the SLE gate
delay models, Section 2.4 presents the characterization of a cell
library and Section 2.5 explains the detection of the SLE parameter
values for a given sample point from the random parameter space.

2.1. Logical effort

The logical effort formalism [7] is a fast and efficient way of
determining the delay of a path in a digital circuit. The path delay
is simply the sum of the delays of the gates on the path, and the
delay of a logic gate r is approximated as

dLEr ¼ τd ð1Þ
where dLEr is the absolute delay of a gate measured in seconds, τ is
the delay of a parasitic-capacitance-free reference inverter driving
another identical inverter and d is the delay of the logic gate
expressed in units of τ. The d factor in (1) models the gate delay
and is given by

d¼ pþghð Þ ð2Þ
where p represents the intrinsic (parasitic) delay, g is the logical
effort and h is the electrical effort or electrical fanout. Logical effort
g is a measure of the complexity of a gate. It depends only on the
gate's topology and is independent of the size and the loading of
the gate. Parasitic delay p expresses the intrinsic delay of the gate
due to its own internal parasitic capacitance, and it is largely
independent of the sizes of the transistors in the gate. The fanout h
is the ratio of the load capacitance of the logic gate to the
capacitance of a particular input.

2.2. From logical effort (LE) to stochastic logical effort (SLE)

Eqs. (1) and (2) provide a way of decomposing the effects of
statistical parameter variations on gate delays. In a different context,
Sutherland et al. [7] analyzed different semiconductor processes with
varying supply voltages, and observed that almost all the effect of
process parameters and supply voltage on gate delay is captured by
the reference inverter delay (τ in (1)), evenwhen the parameters vary
over a large range spanning different fabrication processes. The
logical effort g and the unitless parasitic delay p of a gate exhibit
relatively little variation with process parameters and supply voltage.
Exploiting this observation in the context of timing yield analysis in
[8] a stochastic logical effort (SLE) model was proposed where the
delay of a gate was modeled as

dLEr Xð Þ ¼ τðXÞ pþghð Þ ð3Þ
where X is a vector of random variables, each component of which
represents a different statistical circuit or process parameter and τðXÞ
is the reference inverter delay when the parameters are given by X.
As is apparent in this equation, in the stochastic logical effort

approximation, all process and environmental variations are cap-
tured by the statistical variable τ while g, p and therefore d are
assumed to be independent of process parameters. We refer to the
approximation given in (3) as first-degree stochastic logical effort
(abbreviated as SLE.d1).

In this paper, we introduce a further refinement of this
approximation described by the following equation:

dLEr Xð Þ ¼ τðXÞ pðXÞþgðXÞhð Þ ð4Þ
where the dependency of p and g on X is also modeled. We call this
model second-degree stochastic logical effort (SLE.d2). As will become
apparent later in the paper, SLE.d2 is much more accurate but
computationally more expensive for the first characterization phase.

In both versions of SLE, in order to compute the delay of a path
π in a circuit, we simply add the delays of the gates on π:

dLEπ ðXÞ ¼ ∑
k

r ¼ 1
dLEr Xð Þ ð5Þ

Here dLEr Xð Þ is the delay of the rth gate on the path π. dLEr Xð Þ is
computed by evaluating (3) for SLE.d1 and (4) for SLE.d2. For this
evaluation, a full transistor-level simulation of the whole circuit
containing the logic path is not necessary. However, the values of
τðXÞ (for both SLE.d1 and for SLE.d2) and pðXÞ and gðXÞ (for SLE.d2)
at a given X are needed. For this purpose, we construct look-up
tables of the SLE parameters τðXÞ, pðXÞ and gðXÞ as the pre-
characterization of a standard cell library. In this case, no circuit
simulations will be needed when evaluating the SLE delay for-
mulas for circuits that are built using gates from such a pre-
characterized library. The extraction of the SLE model parameters
and the pre-characterization of a standard cell library are pre-
sented in the following sections.

2.3. Extraction of SLE model parameters

SLE parameters can be computed at a given X by running
transistor level circuit simulations on small test circuits which
contain only the reference inverter (for τðXÞ) or the gate under
consideration (for pðXÞ and gðXÞ) together with a proper driver and
load circuitry. Fig. 1 shows the test circuit constructed with only
reference inverters to compute τðXÞ. For computing τðXÞ, first, the
random parameters of all inverters in the figure are set according
to X and then the number of inverters connected to the node 4 is
iterated from 1 to 8. This means that h (fanout) is iterated from
1 to 8 as h is equal to the output load capacitance over input
capacitance. Similarly input slope can be changed by changing the
number of inverters connected to node 3 to collect results for
different slopes. At each iteration, by performing TL transient

h - 1
inverters

h inverters h inverters LOAD

LOAD LOAD LOAD

1
2

3 4 5 6

Fig. 1. Reference circuit for τðXÞ computation.

A.A. Bayrakci / INTEGRATION, the VLSI journal 48 (2015) 101–108102



analysis (SPICE simulations), the delay of the inverter between
nodes 3 and 4 is recorded. As a result, for a sample X, a plot similar
to Fig. 2 is obtained.

The x-axis in the plot is fanout, h, and the recorded delays are
marked by the crosses. A line is fitted to the marked crosses as
shown in the figure. This line has the slope g:τðXÞ. As g is 1 for the
reference inverter by definition, the slope is equal to τðXÞ. Also
the point where the line intersects the y-axis is equal to p:τðXÞ. The
fairness of linear fanout–delay relationship assumption in the SLE
formalism can be observed in the figure.

If SLE.d2 is used, a similar extra test circuit with a similar plot
should be used for each gate type1 to compute pðXÞ and gðXÞ. But
this time, instead of inverters, the test circuit in Fig. 1 is con-
structed with the gate type, whose pðXÞ and gðXÞ values are
computed. Then, the slope of the fitted line is used to compute
gðXÞ, whereas the point of intersection with the y-axis is used to
compute pðXÞ of the corresponding gate type. For the more
accurate SLE.d2 gate delay model, the construction of look-up
tables for pðXÞ and gðXÞ is required in addition to τðXÞ table, which
are constructed only once during the characterization of a stan-
dard cell library.

2.4. Characterization of a cell library

When both inter- and intra-die variations are considered, SLE
has to be able to compute the delay for any gate having any
random parameter values. For this purpose, a table of τðXÞ values
for SLE.d1 and also tables of pðXÞ and gðXÞ values for SLE.d2 are
required. In order to construct such tables, we first divide the
random parameter space with equal intervals and then perform
the transient Spice analysis as explained in Section 2.3 for each
sample point separated with equal intervals.

In this paper, we assume two random parameters: gate length ðLÞ
and threshold voltage ðVtÞ. Therefore, we divided the 2D random
parameter space as shown in Fig. 3, but instead of 153�153 points in
the figure, we used 20�20 sample points in order to perform less
number of Spice TL simulations for the characterization of the
standard cell library. But the resolution of the resultant tables is low
as only parameter values corresponding to 20�20 samples are
computed. We apply linear interpolation to increase the resolution
of the look-up tables up to 153�153 as shown in Fig. 3.

2.5. Detection of the SLE parameters for any sample point X

After the characterization is over, in order to compute the delay
of a gate, one has to draw the SLE parameters from the look-up
tables for a given X. This is done by selecting the table entry that
corresponds to the closest sample point in the random parameter
space to the desired X. But if the closest point was computed by
comparing the euclidian distance to each of the 153�153 sample
points, this would consume too much time and affect the perfor-
mance of SLE very bad, because this operation is performed for
each gate and sample point during the run-time. Instead of that,
we do the following: assume that we want to find the closest point
to the given sample point shown in Fig. 3, whose corresponding
gate length is A and threshold voltage is B. The closest point is (LM,
VN), where M and N are computed as

M¼ Round
A�L1
α

� �
þ1 ð6Þ

N¼ Round
B�V1

β

� �
þ1 ð7Þ

The required SLE parameters corresponding to the point (LM, VN)
can now be used in the computation of the gate delay by (3) for
SLE.d1 and by (4) for SLE.d2.

3. Timing yield estimation based on SLE gate delay model and
importance sampling

3.1. Preliminaries and previous work

Timing yield is the fraction of dies, which satisfy the timing
requirements, in other words which have circuit delay smaller
than a timing constraint Tc .

In our previous work [6], we had introduced a novel timing
yield estimation methodology based on importance sampling. In
this paper, we will utilize the same methodology, but this time in
conjunction with the SLE gate delay model. The timing yield
estimation model is based on the transistor level Monte Carlo
estimation of timing yield (Yield) or loss (Loss) where

Loss¼ 1�Yield¼
Z

IðTc;XÞf ðXÞ dX ð8Þ

as the mean of the indicator random variable IðTc;XÞ over the
PDF f ðXÞ, where f ðXÞ is the joint probability density function
for the random parameters inside the circuit like gate length and
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Fig. 2. Actual actual fanout vs. delay plot of the inverter for a sample point X.
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Fig. 3. The random parameter space divided by equal intervals and the detection of
a closest point for a given X . μ is the mean and σ is the standard deviation.

1 Gate types refer to different gates with different numbers of inputs and
different functionalities like AND, OR, NOR, NAND, etc.
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threshold voltage. The indicator variable above is expressed as

IðTc;XÞ ¼
1 if dCðXÞ4Tc

0 if dCðXÞrTc

(
ð9Þ

and dCðXÞ, which is the circuit delay corresponding to X is
expressed as

dCðXÞ ¼maxπAΠcrit dπðXÞ ð10Þ
A path π in a circuit C is a sequence of gates g0; g1; g2;…; gn where
g0's inputs are primary inputs of the circuit and gn's output is a
primary output of the circuit. We denote by Πcrit the set of
statistically critical paths. dπðXÞ in (10) represents the delay of the
critical path π and is computed using precise transistor level Spice
simulations when the random variables inside the circuit are set to X.

The corresponding standard Monte Carlo estimator for Loss in
(8) is expressed as

LossN ¼ ð1=NÞ ∑
N

i ¼ 1
IðTc;XiÞ ð11Þ

where Xi's are the drawn samples according to f ðXÞ and Tc is the
timing constraint. With the MC method, full circuit simulations (TL
Spice simulations of the whole circuit containing the paths under
consideration) must be performed for each sample point, Xi, in
order to compute dCðXiÞ and determine whether IðTc;XiÞ ¼ 1 or 0.
The MC method is widely used as a golden reference in the
literature in assessing the accuracy and efficiency of timing yield
estimation techniques. However, it is generally believed that it
cannot be used in practice for estimating timing yield as it requires
too many costly full circuit simulations for acceptable accuracy,
even though there are some arguments to the contrary [9]. In the
rest of this paper, the loss estimator in (11) is referred to as the
standard MC (STD-MC) estimator. From the central limit theorem,
the probability that the loss estimates of the STD-MC estimator
will be in a range 71:96ðσ=

ffiffiffiffi
N

p
Þ around the actual loss (Loss)

where

σ2 ¼
Z
Ω
IðTc;XÞf ðXÞ dX�Loss2 ð12Þ

is written as

P Loss�1:96
σffiffiffiffi
N

p rLossNrLossþ1:96
σffiffiffiffi
N

p
� �

¼ 0:95 ð13Þ

Therefore, the error of the Monte Carlo estimators in the form of
(11) with more than 95% confidence is expressed as

Error � 2σffiffiffiffi
N

p
����

���� ð14Þ

At that point, [6] proposes to use the importance sampling
estimator to speed-up STD-MC, as shown below:

LossISN ¼ 1
N

∑
N

i ¼ 1
IðTc;XiÞ

f ðXiÞ
~f ðXiÞ

ð15Þ

which draws the samples Xi from another biasing distribution ~f .
The choice of this biasing distribution is the key issue to speed up
STD-MC. In this paper, we use SLE gate delay model to determine a
biasing distribution for the IS estimator in (15).

3.2. Importance sampling with stochastic logical effort (ISLE)

Loss can also be estimated based on the SLE formalism, without
performing any full circuit simulations. The delay of a circuit can
be computed analytically based on the SLE formalism as follows:

dLEC ðXÞ ¼maxπAΠcrit d
LE
π ðXÞ ð16Þ

where dLEπ ðXÞ is evaluated using the SLE formula in (5) and using
SLE.d1 or SLE.d2. We define a new indicator random variable

ILEðTc;XÞ, which takes the value 1 if the delay of a circuit computed
analytically using the SLE equations exceeds the target delay Tc,
i.e., ILEðTc;XiÞ is 1 if dLEC ðXiÞ4Tc and 0 otherwise. The loss estimator
based on this new indicator variable takes the form

LossLEN ¼ 1
N

∑
N

i ¼ 1
ILEðTc;XiÞ ð17Þ

In computing LossLEN above, no full circuit simulations are per-
formed. Only simple evaluations of the SLE delay formulas are
needed, based on the pre-characterizations of τðXÞ, pðXÞ and gðXÞ.
In contrast, the STD-MC loss estimator requires N full circuit TL
simulations, one for every sample. The loss estimator in (17) will
be referred to as the SLE-MC estimator in the rest of this paper.

The estimation of loss based on the STD-MC estimator is
obviously much more accurate than the one based on the SLE-
MC estimator, but much more costly. We use the cheap SLE-MC
estimator not by itself for yield estimation, but by in a novel
approach to construct a much faster IS-based loss estimator called
ISLE. The proposed biasing distribution ~f ðXÞ to be used in ISLE is

~f ðXÞ ¼ ILEðTϵ
c;XÞf ðXÞ

LossLE;ϵ
ð18Þ

where Tϵ
c is Tc�ϵ and ϵ is an adaptive margin introduced in [6].

Substituting the biasing distribution ~f in (18) and performing
some simplifications based on the fact that ILEðTϵ

c;XiÞ takes the
value 1 for all samples drawn from ~f ðXÞ, we arrive at

LossISLEN ¼ LossLE;ϵ

N
∑
N

i ¼ 1
IðTc;XiÞ ð19Þ

where the samples Xi are drawn from ~f ðXÞ instead of f ðXÞ.

3.3. Quantifying variance reduction due to ISLE

The error of an estimator is the deviance of the estimator's
result from the actual loss as explained in Section 3.1 for a general
estimator. In this section, the errors of the STD-MC and ISLE
estimators are derived and the results are compared. The paper
[6], which proposes the utilization of importance sampling, also
uses an identical theoretical error notation, however, it does not
show the derivation of the proofs, which we show here.

Theorem 3.1. The error of the STD-MC estimator in (11) obtained
with N full-circuit simulations is

ErrorMC ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Loss:Yield

p
=
ffiffiffiffi
N

p
ð20Þ

with more than 95% confidence.

Proof. By (14), the error of the STD-MC estimator for loss using N
full-circuit simulations is 2σ=

ffiffiffiffi
N

p
where σ2 is the variance of the

indicator random variable IðTc;XÞ with PDF f ðXÞ. The mean of
IðTc;XÞ is equal to the actual timing loss. σ2 is computed as

σ2 ¼
Z
Ω
IðTc;XÞ2f ðXÞ dX�Loss2 ð21Þ

IðTc;XÞ is either 1 or 0, thus, IðTc;XÞ ¼ IðTc;XÞ2. Eq. (21) becomes

σ2 ¼ Loss�Loss2 ¼ Lossð1�LossÞ ¼ Loss:Yield ð22Þ
The error of the STD-MC estimator is thus given by (20). □

Theorem 3.2. The error of the ISLE estimator in (19) when N full
circuit simulations are performed is

ErrorISLE ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Loss:ðLossLE;ϵ�LossÞ

q
=
ffiffiffiffi
N

p
ð23Þ

with more than 95% confidence.

Proof. By (14), the error of the ISLE estimator for loss using N full-
circuit simulations is 2 ~σ=

ffiffiffiffi
N

p
where ~σ2 is the variance of the random
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variable IðTc;XÞf ðXÞ=~f ðXÞ with PDF ~f ðXÞ. The mean of this random
variable is equal to the actual timing loss. ~σ2 is computed as

~σ2 ¼
Z
Ω

IðTc;XÞf ðXÞ
~f ðXÞ

 !2

~f ðXÞ dX�Loss2 ð24Þ

Substituting ~f ðXÞ from (18) and using the fact that IðTc;XÞ2 ¼ IðTc;XÞ
we obtain

~σ2 ¼
Z
θ

IðTc;XÞf 2ðXÞ
ILEðTϵ

c;XÞf ðXÞ
LossLE;ϵ

dX�Loss2 ð25Þ

θ denotes the subregion of Ω in which ~f ðXÞ is non-zero. From (18),
~f ðXÞ is zero when ILEðTϵ

c;XÞ is zero (and thus IðTc;XÞ ¼ 0, if the margin
ϵ is chosen properly). When ~f ðXÞ is non-zero, ILEðTϵ

c;XÞ ¼ 1. Thus

~σ2 ¼ LossLE;ϵ
Z
θ
IðTc;XÞf ðXÞ dX�Loss2 ¼ Loss:ðLossLE;ϵ�LossÞ ð26Þ

The error of the ISLE estimator is thus given by (23). □

If the same number of full circuit simulations N is used with
both methods, then the ratio of the errors of the estimators is
given by

Error Ratio¼ ErrorMC

ErrorISLE
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yield

ðLossLE;ϵ�LossÞ

s
ð27Þ

Alternatively, suppose a bound on the allowable estimation error
is given. The ratio of the minimum number of full circuit simula-
tions required by the two approaches to achieve this same error
bound is given by

Speedup¼ NMC

NISLE
¼ Yield

ðLossLE;ϵ�LossÞ
¼ Error Ratio2 ð28Þ

As is apparent from (27) and (28), while LossLE;ϵ approaches the
real loss Loss, the improvement that ISLE offers over STD-MC
increases. If Speedup in (28) is large, one might conclude that TL
simulations are not needed and LossLE;ϵ can simply be used as an
accurate loss estimate. However, this conclusion is not correct.
LossLE;ϵ is computed using (17), where Tϵ

c ¼ Tc�ϵ with ϵ as the
margin parameter, which is determined adaptively by the help of
the TL simulations [6].

4. Results

4.1. Experimental setup

Among all process parameters, the most significant are channel
length and threshold voltage [10]. Therefore, in our experiments,
we assumed two random device parameters: transistor gate
length ðLÞ and threshold voltage ðVtÞ, whose statistical variations
are regularly reported by International Technology Roadmap for
Semiconductors (ITRS) reports due to their impact on the perfor-
mance of the integrated circuits. The random parameter variations
are set according to the 2011 report of ITRS [11]:

� Effective channel length L with a 3σ=μ ratio of 12%.
� Threshold voltage Vt with a 3σ=μ ratio of 20%.

We have considered both inter- and intra-die variations as both
share a similar portion of the statistical process variations [5,12].
Half of the variation is assumed to come from inter-die and the
other half from intra-die variations. An important property of the
intra die variations that must be modeled to catch the reality is the
correlation of the statistical device parameters that increases
while the distance in between the gates decreases, i.e. spatial
correlation. In order to take into account the spatial correlations, a

4-level version of the quad-tree model proposed in [13] is
constructed. According to this model and for each random para-
meter, we employ 85 independent random variables to model
spatial correlations. In our case, 170 independent random variables
are employed for two random parameters.

ISCAS'85 benchmark circuits [14] are utilized in the experi-
ments. Three statistically critical, statically sensitizable (true)
paths are extracted representing the statistically critical paths set
ðΠcritÞ for each test circuit. They include 22 different types of logic
gates with an average path length of 30 gates. The circuits are
realized by NanGate 45 nm Open Standard Cell Library [15].

NgSpice [16] open source Spice simulator is used to collect
precise transistor level Spice simulation timing data. We modified
the source code of the NgSpice simulator so that 45 nm transistor
model file [17] data is set as default and also both the gate length
and threshold voltage values for each transistor in the circuit can
be set independently inside the Spice circuit deck. A total of about
1.5 million transistor level simulations are performed in parallel on
a system with two Xeon E5-2620 6 core 2 GHz processors in order
to collect the exact delays and compute the actual loss values for
the benchmark circuits. The simulations have prolonged more
than 1 month.

4.2. Empirical accuracy of SLE gate delay model

We use SLE as an on the back of an envelope method to
approximate the change in the delay of a gate when the statistical
parameters of the gate differ. In this section, we will analyze the
accuracy of SLE model with respect to the golden TL circuit
simulations. The delay of each benchmark circuit is computed
for 50,000 different sample points drawn from f ðXÞ, where f ðXÞ is
the joint distribution of L and Vt according to the variation model
explained in the previous section. As a result, the circuit delay is
computed for each sample point, for each test circuit and by both
TL circuit (Spice) simulation and the stochastic logical effort gate
delay models (SLE.d1 and SLE.d2). Table 1 demonstrates the
accuracy of SLE methods with respect to Spice TL simulation.

The first column in Table 1 is the test circuit, the second and
third columns show the normalized root mean square (NRMSE)
error when SLE.d1 and SLE.d2 are used respectively for the circuit
delay approximation. The root mean square error (RMSE) is
computed as

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i ¼ 1ðdCðXiÞ�dLEC ðXiÞÞ2
N

s
ð29Þ

where dCðXiÞ is the actual circuit delay computed by Spice TL
simulation for the given Xi sample point and dLEC ðXiÞ is the
approximate circuit delay computed by the SLE delay model
(either by SLE.d1 or SLE.d2) for the same Xi. N is the number of
drawn sample points, which is 50,000 in this case. The NRMSE can

Table 1
The accuracy of SLE.d1 and SLE.d2.

Test circuit NRMSE (%)

SLE.d1 SLE.d2

c432 3.19 5.09
c499 4.78 1.01
c880 3.55 0.39
c1355 2.92 2.01
c1908 4.46 0.43
c2670 3.40 0.54
c3540 3.72 0.30
c5315 3.61 0.26
c7552 3.06 0.64
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be computed through dividing the RMSE by the sample mean of
the actual circuit delay. It can be deduced from Table 1 that the
accuracy of SLE.d2 is much better than SLE.d1 as expected. How-
ever, for c432, SLE.d2 delay has a more shifted mean delay value
which results in a greater NRMSE error. The reason for that is the
exceptionally unbalanced gate loads in c432 circuit. Nonetheless, if
we equalize the means of SLE.d1 and SLE.d2 delays with the mean
of the actual delays, the resultant NRMSE errors for c432 would
become as 2.57% and 0.64% respectively, which shows the fact that
even for c432 SLE.d2 performs much better than SLE.d1 in terms of
catching the variations.

To gauge the accuracy of SLE.d1 and SLE.d2, the scatter plot in
Fig. 4 shows the delays computed by SLE formulas versus the
actual delays computed by TL simulations for each of the 50,000
sample points. The delay computed by SLE.d1 versus the actual
delay (circle) and the delay computed by SLE.d2 versus the actual
delay (cross) are shown in the plot. As seen in this plot, SLE
methods have a tendency similar to the actual delays. As expected,
SLE.d2 is more accurate, which comes at the cost of having
statistical pre-characterizations for parasitic delay p and logical
effort g for all the gates in the library, in addition to the reference
inverter delay τ.

4.3. Empirical accuracy of ISLE loss estimation

With the results that we present in this section, we compare
the accuracy and the efficiency of our improved ISLE estimator in
(19) against the standard Monte Carlo (STD-MC) estimator in (11).
In order to empirically measure the error in the loss estimates
obtained by the STD-MC estimator and ISLE estimator, we perform
independent repetitions of the same experiment run. In doing so,
we empirically compute the error (or variance) achieved by both
the loss estimators.

We perform 250 independent repetitions of the same experi-
ment (evaluation of the estimator). These 250 independent runs
constitute the samples of the loss estimator and the variance and
error of the loss estimator is computed over these 250 loss
estimations. In each independent run, 200 samples are drawn
independently from the joint PDF f ðXÞ in the parameter space. For
the ISLE estimator, most of the 200 samples are discarded as
explained in Section 3.2 based on the evaluation of the SLE

equations and a reduced number (NISLE on the average, showing
negligible variation from run to run) of TL simulations are
performed. NISLE includes all the TL circuit simulations required
to compute LossNISLE in (19). In evaluating the STD-MC estimator, we
draw NTL ¼NISLE samples randomly. For the STD-MC estimator, the
results of TL circuit simulations performed at every one of the NTL

sample points are used. By this setup, we utilize the same number
of TL simulations at each estimation of both ISLE and STD-MC loss
estimators for a fair comparison. We collect the resultant 250 loss
estimates coming from STD-MC estimator and 250 estimates from
ISLE estimator, where both estimators use the same number of TL
simulations for each estimate. We compute empirical Speedup in
(28) using (27), i.e. by dividing the variance of STD-MC estimator
to the variance of ISLE estimator over these 250 estimates and
around the actual loss.2 The actual loss value is computed using
STD-MC over all the 50,000¼250�200 sample points generated
during all of the 250 runs.

The LossLE;ϵ value that is needed for computing the IS estimator
in (19) is computed using the SLE based MC estimator (SLE-MC) in
(17) using all the 50,000 sample points. The computation of it
brings a negligible cost as it is based on very simple and fast SLE
gate delay models and does not require any TL simulation. This
will be clarified in the next section.

The Speedup that we report for the ISLE estimator over the
STD-MC estimator can be interpreted in two ways: it represents
the ratio of the number of TL circuit simulations required
by the STD-MC and ISLE estimators to achieve the same accuracy
(error), as given by (28). Secondly, Speedup shows how much
smaller the variance of ISLE estimator is than the STD-MC
estimator although they both perform the same number of TL
simulations.

The timing constraint values are set for a loss of about 10%. In
order to detect the Speedup, we compute three loss estimates
using three estimators for each test circuit in ISCAS’85 benchmark:

� the standard MC (STD-MC) estimator,
� the ISLE estimator based on SLE.d1,
� the ISLE estimator based on SLE.d2.

The Speedup is computed for two different ISLE versions, one
based on SLE.d1 and the other based on SLE.d2 by dividing the
variance of STD-MC estimates to the variance of ISLE estimates
around the actual Loss and with the same number of TL simula-
tions. The actual Loss is computed using STD-MC with 50,000
sample points, i.e. 50,000 TL circuit simulations. The results in
Table 2 show that both versions of our ISLE yield estimator achieve
cost reduction over the STD-MC estimator for the same accuracy.
In other words, both versions of ISLE estimator have better
accuracies than STD-MC estimator when the same number of TL
simulations are utilized. ISLE based on SLE.d2 performs much
better, achieving two orders of magnitude cost reduction in the
worst-case, whereas the cost reduction achieved by ISLE based on
SLE.d1 goes down to 8 in the worst-case. The average Speedup for
SLE.d1 is 12 whereas for SLE.d2, it is 179.

In order to visualize the Speedup or variance reduction
gathered by ISLE based on SLE.d2 over STD-MC, it is good to plot
loss estimates of both estimators, where both of them use the
same number of TL simulations for loss estimation, i.e. they have
the same computational cost. Fig. 5 demonstrates these loss
estimates for each of the 250 sets for c1908 test circuit as an
example. This plot clearly shows that every estimate of ISLE based5 6 7 8 9 10 11 12
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Fig. 4. Scatter plot for test circuit c1355 (the plots are similar for all benchmark
circuits).

2 Combining (22) and (26) with (28), it can be seen that Speedup is equal to
the ratio of the variances for the loss estimates obtained by the two estimators with
the same number of samples (TL simulations).
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on SLE.d2 is much closer to the actual Loss, which is 10.09% for
c1908 as shown in Table 2.

4.4. Analysis of computational cost

The TL Spice simulation requires the numerical solutions of
many non-linear, differential equations. It is a very precise, but
computationally too complex method. ISLE can reduce the number
of TL simulations without decreasing the accuracy. Yet, it comes
with two additional costs: one-time pre-characterization of a
standard cell library and the computation of LossLE;ϵ. In our
implementation, we required about 1.5 million TL Spice simula-
tions of the simple test circuit in Fig. 1 for the pre-characterization
of NanGate's 45 nm Open Cell Library. This is a one-time cost for a
standard cell library that will never be repeated in the ISLE timing
yield analysis of any circuit designed with the same cell library.
Therefore, we do not take it into account in the complexity
analysis. Second overhead source, i.e. the computation of LossLE;ϵ

based on (19), requires circuit delay computation for each sample
point but using only linear SLE equations in (4) without requiring
any TL simulations. This computation is much faster than the TL
simulation and can be computed in parallel with the TL simula-
tions required by ISLE, therefore we did not reserve an additional
overhead for it in Speedup computations.

As a sample case, we computed the empirical cost results for a
sample path with 25 gates from c880 on our Xeon 2 GHz 6 core
machine. Spice TL simulation to compute the delay of this path for
one sample point requires about 12 s, whereas the computation of

the path's delay using SLE formalism for one sample point requires
3.84 ms. In ISLE, the additional overhead is due to the computation
of the LossLE;ϵ, which requires the computation of path delay using
SLE for all sample points. Looking at Table 2, the Speedup for c880
is 157, therefore assuming 50,000 sample points as we did in this
paper, the computational cost of STD-MC and ISLE with the same
accuracy can be computed as

CostSTD�MC ¼ 50;000� 12 s

¼ 166:7 h

CostISLE ¼ 50;000� 12 s

157
þ50;000� 3:84 ms

¼ 1:1 h

As seen in this sample case the additional overhead ð50;000�
3:84 msÞ of ISLE is negligible and even if considered, it can only
decrease the Speedup from 157 to 152. It constitutes only about
5% of CostISLE. It can also be computed in parallel with the TL
simulations resulting in almost zero overhead.

5. Conclusion

We have demonstrated in this paper that for a variance aware
IC delay analysis stochastic logical effort can be used to approxi-
mately but efficiently capture the gate delay variations due to the
parameter variations and that importance sampling in conjunction
with stochastic logical effort (ISLE) can serve as a very accurate yet
computationally viable timing yield estimation method as a final
stage verification.

The proposed SLE formalism based ISLE timing yield estimation
is applied to ISCAS’85 test circuits while both inter-die and intra-
die variations with spatial correlations are taken into account. The
results show that SLE.d2 based ISLE can estimate timing yield
on the average 179 times faster than the TL simulation based
standard Monte Carlo although both estimates have the same
accuracy level.
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