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Abstract—Considerable effort has been expended in the elec-
tronic design automation community in trying to cope with the
statistical timing problem. Most of this effort has been aimed
at generalizing the static timing analyzers to the statistical case.
On the other hand, detailed transistor-level simulations of the
critical paths in a circuit are usually performed at the final stage
of performance verification. We describe a transistor-level Monte
Carlo (MC) technique which makes final transistor-level timing
verification practically feasible. The MC method is used as a
golden reference in assessing the accuracy of other timing yield
estimation techniques. However, it is generally believed that it can
not be used in practice as it requires too many costly transistor-
level simulations. We present a novel approach to constructing
an improved MC estimator for timing yield which provides the
same accuracy as standard MC but at a cost of much fewer
transistor-level simulations. This improved estimator is based
on a unique combination of a variance reduction technique,
importance sampling, and a cheap but approximate gate delay
model. The results we present demonstrate that our improved
yield estimator achieves the same accuracy as standard MC at
a cost reduction reaching several orders of magnitude.

Index Terms—Importance sampling (IS), Monte Carlo (MC)
method, statistical timing analysis, statistically critical paths,
transistor-level simulation, yield estimation.

I. Introduction

IN VLSI DESIGN methodologies, gate-level static timing
analysis (STA) techniques have been widely used due to

their desirable features such as linear computational complex-
ity with circuit size and static nature as a result of not reliance
on input vectors [1]. With current fabrication technologies in
the nano-meter regime, the impact of process variations, espe-
cially intra-die variations, have become much more significant.
This necessitated the development of techniques for accurate
and meaningful modeling of statistical process variations in
timing analysis. After the turn of the millennium, we have
witnessed an extensive amount of effort being expended in
statistical timing analysis research [1]. Most of this effort
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has been aimed at the development of statistical static timing
analysis (SSTA) techniques, as a direct generalization of the
STA algorithms to the statistical case. A comprehensive review
of the recent developments in this field that puts all relevant
work into perspective is given in [1]. At this point, the SSTA
problem and its key challenges are very well understood. Most
of the approaches to SSTA are based on what is referred to as
the block-based scheme [1], which follows the STA algorithms
quite closely. In these block-based SSTA methods, random
variables (or their probability distributions) for latest node
arrival times are propagated on an abstract timing graph of the
circuit, as opposed to deterministic times that are propagated
in STA. Block-based methods have been preferred due to
their runtime advantage when compared with other approaches
to SSTA. Moreover, block-based SSTA can be performed
in an incremental manner enabling its use in timing yield
optimizations and for diagnostic purposes [1], [2]. On the
other hand, spatial and topological correlations, non-Gaussian
process parameters and non-linear dependence of gate delay on
these parameters, approximation of the maximum of random
variables (for latest arrival times) at every node of the timing
graph are issues that need to be addressed in block-based
SSTA methods. In most basic form, SSTA algorithms ignore
correlations, assume that all statistical process parameters and
gate delays have a Gaussian distribution and approximate the
maximum of two Gaussian random variables as another Gaus-
sian random variable. All of these assumptions and simplifi-
cations make it possible to obtain very efficient SSTA algo-
rithms [2]. However, ignoring correlations and the Gaussian
assumption have detrimental, and in some cases, unacceptable,
effects on the accuracy and meaningfulness of the results
obtained by SSTA [3]. As a result, several extensions of SSTA
that take correlations into account, that use non-linear gate
delay models and employ non-Gaussian approximations for
the maximum of two random variables have been proposed [1].
These extensions indeed improve the accuracy of SSTA, but
at the same time increase its computational complexity and
may render it unusable in timing optimizations which require
very efficient in-the-loop evaluations [3]. Nevertheless, block-
based SSTA on an abstract timing graph is widely accepted as
a useful tool and is becoming indispensable in current state-
of-the-art statistical design methodologies.

In traditional very large scale integration (VLSI) design
methodologies, designers usually choose to perform transistor-
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level circuit simulations on the critical path(s) of a circuit that
have been identified with deterministic STA, as a final verifica-
tion before timing sign-off. One would ideally like to perform
a similar transistor-level, but statistical, timing verification on
the statistically critical path(s) that are possibly identified
with a block-based SSTA method. Taiwan Semiconductor
Manufacturing Company, a leading chip manufacturer, has
already announced the insertion of transistor-level path-based
statistical timing analysis into its new reference design flow
in order to enhance timing accuracy [4].

Transistor-level path-based statistical timing analysis can be
simply performed by running Monte Carlo (MC) transistor-
level circuit simulations on the statistically critical paths of a
circuit based on the same statistical process variations model
used in SSTA. In conventional MC yield estimation, a number
of samples in the parameter probability space are generated.
The overall maximum delay for the statistically critical paths
at each sample point in the probability space is determined by
performing transistor-level circuit simulations. An estimator
for timing yield is obtained by considering the fraction of
samples for which the timing constraint is satisfied. Because
of the high-computational cost of transistor-level simulations
for each sample, it is generally believed that MC analysis can
not be used in practice for estimating timing yield, even though
there are some arguments to the contrary [5]. In order for MC
analysis to be affordable, the number of samples in probability
space one has to work with needs to be limited. This, however,
adversely affects the accuracy of the MC yield estimator,
which has a large error for a small number of samples. This is
a weakness of the conventional MC method and has prevented
it from finding widespread use for practical yield estimation,
even though it is widely used as a golden reference in assessing
the accuracy of other timing yield estimation techniques.

In this paper, we address the problem of estimating timing
yield for a circuit under statistical process parameter vari-
ations and environmental fluctuations by proposing a novel
and improved MC method that is based on transistor-level
circuit simulations that are run on the statistically critical
paths of a circuit. The technique we propose aims to improve
the accuracy of the yield estimates obtained from a given
number of MC simulations. Alternatively, our improved MC
estimator achieves the same accuracy as the standard MC
estimator, but at a cost of much fewer number of transistor-
level circuit simulations. This is made possible by using a
variance reduction technique called importance sampling (IS)
that we combine in a novel manner with a cheap-to-evaluate
but approximate gate delay model. We use the cheap gate
delay model to guide the generation and selection of sample
points in the parameter probability space in a transistor-level
simulation-based MC method for timing yield estimation.

Our paper is definitely not the first one in the literature
that uses IS or other variance reduction techniques in order
to increase the efficiency, or improve the accuracy, of MC
analysis of statistical phenomena in electronic circuits. In fact,
IS-based MC analysis has been used in order to estimate the
yield of analog circuits [6], perform failure analysis for SRAM
circuits [7]–[9], for statistical interconnect analysis [10], and
even for the statistical timing analysis of digital circuits [11].

The use of simple, cheap-to-evaluate gate delay models (linear,
quadratic or more sophisticated response surface models) in
statistical analysis is also prevalent in the literature [12]–[15].
Moreover, the idea of using path-based transistor-level analysis
for statistical performance verification has also been explored.
However, the challenge and key in using IS to achieve sig-
nificant variance reduction is the non-costly determination of
a useful biasing distribution. The technique we propose in
this paper is novel in the sense that a cheap-to-evaluate gate
delay model and approximate path-based statistical timing
analysis are used in a unique way to (in effect) construct
an effective biasing distribution for IS that indeed results
in significant variance reduction/speed-up. Furthermore, an
adaptive/automated algorithm we propose makes it possible to
apply this IS technique in practice with negligible overhead.
In [6], the outline and a simple analysis for an IS-like tech-
nique (called sectional weighting) that resembles the technique
we propose in this paper was given. In [6], the authors are
not very encouraging regarding the use of this technique due
to the insignificant speed-ups (over standard MC) predicted
by their simple analysis and due to the potentially high-
computational cost of forming the biasing distribution. The
computational complexity of the construction of the biasing
distribution we propose in this paper is not dependent directly
on the dimension of the random parameter space, resulting in
negligible overhead. Moreover, we achieve significant (two-
orders of magnitude) speed-ups over standard MC.

The approach proposed in this paper is based on the premise
that, given the magnitude of process parameter variations and
the non-linear dependence of gate and circuit delay on these
variations, the only sufficiently reliable and accurate method
for final timing yield verification before sign-off is transistor-
level circuit simulation. However, we realize that transistor-
level MC estimation of timing yield will never become ef-
ficient enough for use in a loop for timing optimizations.
As such, the MC timing yield estimation technique based on
transistor-level simulations we propose in this paper is meant
not as a replacement for fast block-based SSTA methods, but
rather, as a complement to them. In fact, in the timing analysis
methodology we describe in this paper, the statistically critical
paths on which we perform transistor-level MC analysis are
identified using a fast block-based SSTA technique.

MC timing yield analysis can also be performed at a higher-
level, in a block-based fashion on the abstract timing graph, in
contrast with the low-level scheme we propose in this paper
that is based on running transistor-level circuit simulations on
a set of statistically critical paths. This cheaper block-based,
gate-level MC timing analysis scheme is in fact used to verify
the accuracy of various block-based SSTA methods which em-
ploy approximations for the distribution of random parameters
and arrival times, gate delay dependence on parameters and the
maximum operation. Recently, variance reduction techniques
such as Latin hypercube sampling [16] were used to improve
the efficiency of block-based, gate-level MC statistical timing
analysis techniques. We believe that sufficient accuracy and
reliability in final timing yield estimation can not be obtained
even by applying MC simulations at a high level using a block-
based scheme. We believe that accurate final verification of
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timing yield must have transistor-level circuit simulation as
its basis, in line with the common practice in traditional VLSI
design where critical paths are simulated at transistor-level
in order to verify that the circuit indeed satisfies the timing
constraints. We demonstrate in this paper that MC transistor-
level simulation in conjunction with a novel variance reduction
technique can serve as an accurate yet computationally viable
timing yield estimation method, to be used for final verification
before timing sign-off.

In Section II, we provide background information and
preliminaries on basic definitions of path and circuit delay,
timing yield and loss, and the MC method and IS. In Sec-
tion III, we describe a comprehensive timing yield estimation
methodology complete with a statistical model for process and
transistor parameters, a cheap-to-evaluate but approximate gate
delay model, a technique to identify statistically critical paths,
and finally, the main novel contribution of this paper, an IS
based, improved MC timing yield estimation technique based
on transistor-level simulations. In Section IV, we provide a
precise, comparative convergence (error) analysis that reveals
the speed-up obtained by our proposed estimator over the
standard MC estimator. Finally in Section V, we present
experimental results on the ISCAS’85 benchmark suite which
demonstrate that our proposed yield estimator offers several
orders of magnitude cost reduction while achieving the same
level of accuracy as the standard MC estimator.

II. Background and Preliminaries

A. Basic Definitions and Notation

1) Random Variables: The random variables that represent
the statistical variations in the circuit are collected into an n-
dimensional vector X, with a joint probability density function
(PDF) denoted by f (X) which is not assumed to be Gaussian.
We note here that the number of random variables, n, is
dictated by the particular inter and intra-die variations model
used and is in general much larger than the number of
statistical process and transistor parameters considered. While
we consider only two random transistor parameters for the
work described in this paper, we employ hundreds of random
variables in modeling the statistical variations of the circuit.
We describe the inter and intra-die variations model we use
later in this paper.

2) Path and Circuit Delay: We use dM
π (X) to denote the

path delay for a path π computed by method M. We will be
using two different methods for computing path delays, one
that is based on an approximate but cheap gate delay model
and another based on expensive but accurate transistor-level
circuit simulations. The path delay naturally depends on the
random variables in X, and hence, it is also a random quantity.
We then define the circuit delay dM

C (X) computed by method
M as the maximum path delay with

dM
C (X) = maxπ∈�crit dM

π (X) (1)

where the maximum is computed over the set of statistically
critical paths �crit. We describe later how we identify a set of
statistically critical paths.

3) Loss and Yield: We define an indicator random variable
IM(Tc, X) as follows:

IM(Tc, X) =

{
1 if dM

C (X) > Tc

0 if dM
C (X) ≤ Tc

(2)

where M is the method used for circuit delay computation
and Tc is the maximum acceptable delay or timing constraint.
This indicator variable “indicates” whether the delay of the
circuit meets the timing constraint for a given realization of
the random variables in X. We then define Loss computed
with method M using

LossM =
∫

�

IM(Tc, X)f (X)dX (3)

as the fraction of the circuits that fail to satisfy the timing
constraint. The integral in (3), the expectation of the indicator
variable IM(Tc, X), is computed over the domain � of the PDF
f (X) of X. Then, Yield, the fraction of the circuits that fulfill
the timing constraint is simply given by

Yield = 1 − Loss. (4)

One very effective method for computing expectation
integrals of the form in (3) is the MC technique, which we
describe below.

B. Monte Carlo Method

MC techniques can be used to compute expectation integrals
of the form

G =
∫

�

g(X)f (X)dX (5)

where � is the domain of the PDF f (X), with f (X) ≥ 0
for all X and

∫
�

f (X)dX = 1. MC estimation of G in (5) is
accomplished by drawing a set of independent random samples
X1, X2, ..., XN from f (X) and by using

GN = (1/N)
N∑
i=1

g(Xi). (6)

The estimator GN above is itself a random variable. Its mean
is equal to the integral G that it is trying to estimate, i.e.,
E(GN ) = G, making it an unbiased estimator. The variance
of GN is Var(GN ) = σ2/N, where σ2 is the variance of the
random variable g(X) given by

σ2 =
∫

�

g2(X)f (X)dX − G2. (7)

The standard deviation of GN can be used to assess its
accuracy in estimating G. If N is sufficiently large, due to the
Central Limit Theorem, GN−G

σ/
√

N
has an approximate standard

normal (N(0, 1)) distribution. Hence

P

(
G − 1.96

σ√
N

≤ GN ≤ G + 1.96
σ√
N

)
= 0.95 (8)

where P is the probability measure. The equation above means
that GN will be in the interval [G−1.96 σ√

N
, G+1.96 σ√

N
] with

95% confidence. Thus, one can use the error measure

|Error| ≈ 2σ√
N

(9)

in order to assess the accuracy of the estimator.
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Several techniques exist for improving the accuracy of MC
evaluation of expectation integrals. In these techniques, one
tries to construct an estimator with a reduced variance for a
given, fixed number of samples, or equivalently, the improved
estimator provides the same accuracy as the standard MC
estimator but with considerably fewer number of samples. This
is desirable because computing the value of g(Xi) is typically
computationally or otherwise costly.

C. Importance Sampling

One MC variance reduction technique is IS [17], [18]. IS
improves upon the standard MC approach described above by
drawing samples for X from another distribution f̃ (X). G in
(5) is first rewritten as below

G =
∫

�

(
g(X)f (X)

f̃ (X)

)
f̃ (X)dX. (10)

If X1, X2, ..., XN are drawn from f̃ instead of f , the improved
estimator G̃N takes the form

G̃N =
1

N

N∑
i=1

g(Xi)
f (Xi)

f̃ (Xi)
(11)

where the factor f (Xi)/f̃ (Xi) has been used in order to
compensate for the use of samples drawn from the biasing
distribution f̃ . In order for the improved estimator above to be
well-defined and unbiased, f̃ (Xi) must be nonzero for every Xi

for which f (Xi)g(Xi) is nonzero. We refer to this as the safety
requirement. The ideal choice for the biasing distribution f̃ is

f̃ideal(X) =
g(X) f (X)

G
(12)

which results in an exact estimator with zero variance with a
single sample! However, f̃ideal obviously can not be used in
practice since the value of G is not known a priori. Instead, a
practically realizable f̃ that resembles f̃ideal is used. The key
(and also the challenge) in using IS in practical problems is the
determination of an effective biasing distribution that results
in significant variance reduction.

III. Timing Yield Analysis Methodology

The comprehensive timing yield estimation methodology we
propose in this paper features the following.

1) [Section III-A]: Modeling of inter- and intra-die statisti-
cal variations based on a quad-tree model that captures
spatial correlations.

2) [Section III-B]: An approximate, polynomial gate delay
model that captures delay dependence on random tran-
sistor parameters, gate load and input slope.

3) [Section III-C]: Identification of a set of statistically
critical paths for a circuit, based on a MC block-based
SSTA analysis that uses the polynomial gate delay model
above and a path sensitization test to identify false paths.

4) [Section III-D]: For comparison purposes, a description
of transistor-level MC determination of timing yield
without IS.

5) [Section III-E]: Fast, accelerated MC estimation of
circuit timing yield based on the set of statistically

critical paths identified above and accurate transistor-
level circuit simulations, using an IS technique which
also utilizes the polynomial gate delay model.

6) [Section III-F]: Our automated algorithm for IS-based
MC determination of circuit. yield.

The main, novel contribution of the work described in this
paper is in devising a unique IS scheme for accelerating timing
yield computations based on transistor-level MC simulations,
which fills a gap in statistical design methodologies and
enables final transistor-level verification and timing sign-off.
However, in order to demonstrate the effectiveness of our
proposed technique, we have developed, and describe, a com-
prehensive timing yield estimation methodology. While some
elements of this methodology are borrowed from previous
paper (such as the quad-tree model for capturing spatial cor-
relations in modeling intra-die variations) and not necessarily
the most comprehensive implementations, our paper addresses
some other important open problems (such as statistically
critical path identification) and offers reasonable and practical
solutions. We now describe the elements that make up our
methodology in more detail.

A. Modeling Process and Transistor Parameter Variations

In this section, we present the statistical model we use
for inter and intra-die variations in process and transistor
parameters. The inter-die variations are perfectly spatially
correlated throughout the circuit. In order to model intra-die
variations and the resulting (partial) spatial correlations in the
circuit, we use the quad-tree model that was proposed by
Agarwal et. al. [19]. In this model, a statistical process or
transistor parameter P such as channel length is expressed as
follows:

P = Pinter +
Q−1∑
q=1

Rintra q(x, y) (13)

where the random variable Pinter models the perfectly cor-
related inter-die variations, Rintra q(x, y) are layout position
(x, y) dependent random variables that are assigned to level
q of the quad-tree model, and Q is the total number of
levels in the model for both intra and inter-die variations. In
most previous paper, Pinter and Rintra q(x, y) are assumed to be
independent random variables with a Gaussian distribution.
In our approach, the basic statistical process and transistor
parameters and the random variables in (13) can have arbitrary
(joint) PDFs.

In a Q-level quad-tree model
∑Q

q=1 22 (q−1) = 4Q−1
3 random

variables are needed for every basic process or transistor
parameter. In this paper, we consider two basic statistical
parameters: the channel length and the threshold voltage. We
use four levels in the quad-tree model including a top level
covering the whole area of the circuit with one grid rectangle.
As a result, for every random process or transistor parameter
we use 44−1

3 = 85 random variables.
It should be emphasized that the computational cost of

the technique we propose is very weakly dependent on the
dimension of the random variable vector X, as is the case
with all MC integral computation techniques.
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B. Gate Delay Model

In the timing yield estimation methodology being proposed
in this paper, an approximate but cheap (in terms of evaluation
cost) gate delay model is used as the key tool in devising
an effective biasing distribution for IS in a unique manner
to accelerate MC yield analysis. In previous paper, we have
employed a stochastic version of the logical effort gate delay
model for this purpose [20]. In this paper, we use a polynomial
gate delay model (PDM) that uses third-degree polynomials
to express the delay and the output slope as a function of
the random process and transistor parameters, input slope and
load (fanout) of the gate. This polynomial gate delay model
requires more computational resources to construct (but still
very cheap to evaluate), but it is more accurate than the logical
effort delay model and results in a much more effective biasing
distribution for IS.

If the channel length L and threshold voltage Vt are consid-
ered as the random transistor parameters, then the delay and
the output slope of a gate r can be represented with

d
PDM

r (Lr, Vtr, Fr, InSr) (14)

and

OutS
PDM

r (Lr, Vtr, Fr, InSr) (15)

where Lr and Vtr are the random parameters for the transistors
in gate r, Fr is the fanout, and InSr is the input slope.

OutS
PDM

r is the output slope and d
PDM

r is the delay of gate r

computed by PDM.
Using this model, the delay of a path π with k gates in

a circuit can be easily computed as follows. First, given the
input slope of the first gate in the path (dictated by a primary
input), the input slopes of all the other gates are computed
using (15) and

InSi+1 = OutS
PDM

i (Li, Vti, Fi, InSi), i = 1, . . . , k−1. (16)

Then, the delay of the path is computed with

d
PDM

π (X) =
k∑

i=1

d
PDM

i (Li, Vti, Fi, InSi) (17)

where X is the vector that collects all of the random vari-
able realizations used in the quad-tree model. The transistor
parameters Li and Vti are computed using X and (13).

The polynomial delay models need to be constructed for
the standard cell library that is being used. Delay look-up
models for gates similar to the ones described above are
routinely constructed in standard cell characterizations. These
delay models have traditionally been used for STA. The delay
model extraction needs to be done only once for a standard cell
library for a given fabrication process. In order to construct the
gate delay and output slope models for the gates in our library,
we run SPICE simulations at suitably chosen sample points
and fit third-order polynomials to the simulation data using a
least-squares technique. For the results presented in this paper,
delay models were constructed with SPICE simulations run per
gate at 1700 sample points in the parameter space. These 1700
sample points were generated as follows. For the two random

Fig. 1. Accuracy of polynomial delay model.

parameters considered (L and Vt in this paper), 425 sample
points were placed non-uniformly in the rectangle in the L-Vt

plane bounded by µ − 3.σ and µ + 3.σ for each parameter,
where µ is the mean and σ is the standard deviation of the
parameter. The sampling frequency was three times higher in
the center µ − σ to µ + σ interval. Only two samples (values)
for both input slope and load were used due to almost linear
dependence of delay on these parameters. As a result, we
end up with 425 × 2 × 2 = 1700 points at which SPICE
simulations are run. We should point out that the parameter
space sampling scheme described here for fitting and building
the gate delay model is only rudimentary and was considered
adequate for the results we present in this paper. If a larger
number of random transistor parameters are included in the
gate delay model, a more efficient sampling scheme that does
not have exponential complexity, such as Latin hypercube
sampling [21], needs to be employed. Efficient and effective
design of experiments [21] (selection of sample points in the
parameter space) in statistical model fitting is a well-studied
problem in statistics and beyond the scope of this paper.

In Fig. 1, a scatter plot that shows the accuracy of the poly-
nomial delay model against SPICE simulations is presented. In
order to generate the graph in Fig. 1, the delay of a complete
path in a circuit (c880 in the ISCAS’85 benchmark suite)
was determined both by transistor-level circuit simulations
and by evaluating the polynomial gate delay model at a
number of sample points in the parameter space. This plot
has 50 000 points that correspond to random realizations for
the two transistor parameters, which do not include the set of
1700 points that were used for fitting the polynomial model.
The polynomial delay models capture the trends and relative
variations in delay as a function of the transistor parameters
quite accurately. However, the delay model is not accurate
enough to replace transistor-level simulation in predicting
timing yield with sufficient accuracy. We use this model in
order to construct an effective biasing distribution to be used
in IS, but not as a replacement for transistor-level simulation
in accurately determining the delay of a circuit.

Gate delay models are utilized in almost all statistical
timing analysis methodologies. The nature of the algorithms
used in statistical analysis may impose restrictions on the
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complexity and form of these models. For instance, in block-
based statistical timing analysis schemes based on PDF alge-
bra/propagation, linear or at most quadratic models are used in
order to make the PDF computations tractable and practical.
In our methodology, the only requirement on the delay model
is that it be cheap to evaluate. Otherwise, there is no restriction
on the complexity (can use higher-order polynomials) or form
(not restricted to polynomial models) of the delay model. A
more complex delay model may result in a larger construction
cost, but again, this is done only once for a gate library
for a given process. The ability to use more accurate and
complex gate delay models is one of the key benefits of our
methodology.

C. Identifying Statistically Critical Paths

In non-statistical design flows, critical path(s) for the circuit
are identified and simulated at transistor-level as a final verifi-
cation that the circuit satisfies the timing constraint. When
statistical variations are considered, the set of statistically
critical paths, i.e., paths that are critical for some assignment
to random parameters and for some primary input transition,
must be considered.

In order to identify a set of statistically critical paths,
we proceed as follows. We first run block-based, traditional
STA on the abstract timing graph of the circuit. However,
we perform this analysis many times in a MC manner by
generating many samples for the random variables X from
the joint PDF f (X). For each sample, we collect the critical
and nearly critical paths into a set of statistically critical path
candidates. In performing STA on the circuit, we use the cheap
polynomial gate delay model described in the previous section.
For this purpose, block-based SSTA methods (e.g., in [22],
[23]) could have been used as well. Next, we apply a static
sensitization test [24] to eliminate false paths. Sensitizable
paths are identified using a satisfiability solver, and included
in the set �crit. We chose not to explore more elaborate
techniques for identifying sensitizable paths, as this is not the
focus of this paper.

D. Transistor-Level Monte Carlo Without Importance Sam-
pling

As reviewed in Section II-B, the standard N-sample MC
estimator for Loss defined by (3) is given by

LossTL
N =

1

N

N∑
i=1

ITL(Tc, Xi) (18)

where the superscript (·)TL indicates that the value of indi-
cator random variable defined by (2) is computed based on
transistor-level (TL) simulations, that is, the path delays in
(1) and hence, the circuit delay in (2) are computed with TL
simulations. In (18) above, the N samples for the random
variables, Xi, i = 1, . . . , N, are drawn from the joint PDF
f (X). For every sample Xi, the random parameters for the
transistors in the circuit are first computed according to the
random variation model described in Section III-A, then a TL
simulation with SPICE is performed for each path in the set
of statistically critical paths �crit (obtained as described in

Section III-C) to compute the path delays dTL
π (X), finally, (1),

(2), and (18) are used to compute the loss estimate LossTL
N .

The MC loss estimator described above will result in
accurate yield estimation results, because it is based on TL
simulations as opposed to an approximate gate delay model,
and the maximum operation in (1) is not approximated in
any manner. However, the standard MC estimator typically
requires too many samples (N) to converge. For each sample,
one needs to perform TL simulations for all of the statisti-
cally critical paths, and hence, the computational cost of the
standard estimator could become prohibitive for practical use.

E. Importance Sampling-Based Estimation of Timing Yield

We now describe the novel contribution of this paper: an
improved loss estimator which is based on IS that significantly
accelerates the convergence of the MC estimator without
forfeiting accuracy and enables its use in practice. The IS-
based MC estimator for Loss

LossIS
N =

1

N

N∑
i=1

ITL(Tc, Xi)
f (Xi)

f̃ (Xi)
(19)

draws the samples Xi from another, biasing distribution f̃ .
We propose the following biasing distribution to be used in
the IS estimator above

f̃ (X) =
IPDM(T ε

c , X)f (X)

LossPDM,ε
(20)

where the loss estimate LossPDM,ε and IPDM(T ε
c , X) are

computed based on the approximate but cheap gate delay
model described in Section III-B, without performing any TL
simulations. In (20) above, the target delay is set to T ε

c = Tc−ε

where ε is a margin parameter. This margin parameter is intro-
duced in order to guarantee that f̃ (Xi) is nonzero everywhere
ITL(Tc, Xi)f (Xi) is nonzero, i.e., IPDM(T ε

c , Xi) must take the
value 1 everywhere ITL(Tc, Xi) is 1. The margin parameter
ε must be large enough so that the indicator variables never
assume the values IPDM(T ε

c , Xi) = 0 (the timing constraint T ε
c

is satisfied according to the PDM model) and ITL(Tc, Xi) = 1
(the actual circuit fails to satisfy the timing constraint accord-
ing to TL simulations) for any of the sample points, Xi. This
condition is called the margin condition. We note here that
the safety requirement described in Section II-C dictates that
the margin condition described above be satisfied. In the next
section, we present an algorithm for computing LossIS

N . As
this algorithm explores a set of sample points, it also gathers
the data required for computing a value of ε that satisfies
the margin condition. For ease of exposition, we continue the
mathematical presentation of our method as if ε is determined
first, before computing LossIS

N . In reality, the algorithm carries
out the LossIS

N computation and ε determination concurrently.
Substituting the biasing distribution f̃ in (20) into (19),

and performing some simplifications based on the fact that
IPDM(T ε

c , Xi) takes the value 1 for all samples drawn from
f̃ (X), we arrive at a simplified form of the IS estimator

LossIS
N =

LossPDM,ε

N

N∑
i=1

ITL(Tc, Xi) (21)

where the samples Xi are drawn from f̃ (X) in (20).
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In (21), the loss estimate

LossPDM,ε =
∫

�

IPDM(T ε
c , X)f (X)dX (22)

is computed based on the approximate but cheap gate delay
model described in Section III-B, without performing any TL
simulations, but again using a MC estimator as follows:

Loss
PDM,ε
K =

1

K

K∑
i=1

IPDM(T ε
c , Xi) (23)

for which one can afford to use a very large number of samples
K, since the evaluation of IPDM(T ε

c , X) for every sample is
very cheap based on the approximate delay model.

In evaluating the IS estimator, in order to draw a sample
from f̃ (X) in (20), we first draw a sample Xi from f (X).
We keep the sample if IPDM(T ε

c , Xi) evaluates to 1 at the
sample point and discard it otherwise. Again, the evaluation of
IPDM(T ε

c , Xi) is performed cheaply based on the delay model.
Each kept sample constitutes one of the Xi in (21). LossIS

N

is then computed by determining whether ITL(Tc, Xi) = 1
for each such kept sample, i.e., by performing TL SPICE
simulations.

F. CompLossMC-IS: Adaptive Detection Algorithm for Mar-
gin

This section presents CompLossMC-IS, the algorithm for
determining LossIS

N as described by (21). To accomplish
this, CompLossMC-IS first generates a set of NS sample
points X = {X1, X2, ..., XNS} from the distribution f . The
choice of NS will be discussed later in this section. Let Yi

be these sample points in decreasing order of dPDM
C , i.e.,

X = {Y1, Y2, ..., YNS} such that dPDM
C (Yi) ≥ dPDM

C (Yj) if i < j.
Using the sample set X , CompLossMC-IS must compute:

1) the subset W = {Y1, Y2, ..., YN} ⊆ X consisting of
all sample points for which IPDM(T ε

c , Yi) evaluates to
1 (using the gate delay model);

2) the subset Q ⊆ W of sample points for which
ITL(Tc, Yi) = 0 (by performing TL simulations);

3) the set SafeMargin = {YN+1, YN+2, ..., YN+SM}; (to be
defined below) and the corresponding value of ε;

4) using ε above, the value of LossPDM,ε as in (23).

Then, the loss estimate LossIS
N will be computed as

LossIS
N = LossPDM,ε.

|W − Q|
|W| .

The first factor on the right hand side is the IS biasing
factor, and the second factor is the fraction of points in W
which result in a loss value.

The only non-straightforward task that the algorithm must
carry out is the determination of the margin parameter ε. ε

uniquely determines W , Q, LossPDM,ε, and thus LossIS
N . The

requirements on ε are discussed next.
Constraints on ε: For IS to provide an unbiased estimator

in our approach, ε must be large enough to satisfy the safety
requirement that for every value of X that f (X)ITL(Tc, X)
is non-zero, f̃ (X) is also non-zero. This translates to the
requirement that ITL(Tc, Xi) = 1 ⇒ IPDM(T ε

c , Xi) = 1. Let

Algorithm 1 CompLossMC-IS (NS, SM, Tc)

1: Generate NS sample points {X1, X2, ..., XNS} from f (X).
2: For each Xi, compute dPDM

C (Xi).

3: Let X = {Y1, Y2, Y3, ..., YNS} be the NS samples
in decreasing order of dPDM

C (Yi).

4: i = 1, Z = ∅, SafeMargin = ∅
5: while (|SafeMargin| < SM and i ≤ NS) do

6: dC = dTL
C (Yi)

7: if (dC < Tc) then
8: Z = Z ∪ {Yi}
9: if SafeMargin == ∅ then

10: ε = Tc − 0.5(dPDM
C (Yi) + dPDM

C (Yi−1))
11: end if
12: SafeMargin = SafeMargin ∪ {Yi}
13: else
14: SafeMargin = ∅
15: end if
16: i = i + 1
17: end while
18: Let N = i − SM − 1 and SafeMargin = {YN+1, ..., YN+SM}

.
19: Let W = {Y1, ..., YN}
20: Q = W ∩ Z
21: LossIS

N = LossPDM,ε . |W − Q| / |W|

us define εabs to be the smallest value of ε that theoretically
guarantees the margin condition. εabs as a function of the
timing constraint Tc is given by

εabs(Tc) = maxover all X such that dTL
C (X)≥Tc

(Tc − dPDM
C (X)).

However, the value of εabs is not known in practice because it
requires knowledge of dTL

C throughout the entire sample space.
Therefore, the algorithm must try to heuristically provide a
value of ε close enough to εabs in order to minimize the bias
in the estimator.

On the other hand, as seen in (27), the closer LossPDM,ε is
to LossTL, the more speedup the IS estimator achieves over
standard MC. Making LossPDM,ε close to LossTL requires
that ε be kept close to a particular value ε∗ that satisfies
LossPDM,ε∗

= LossTL. Thus, to make IS efficient while
preserving correctness, we must choose ε as close to ε∗ as
possible. Similarly to the case in the paragraph above, the
value of ε∗ is not known in practice, since it requires the
entire sample space to be covered by TL simulations.

To summarize, the algorithm must pick a value of ε as
close to ε∗ as possible without going below εabs. However,
since neither of these quantities are known a priori, we use
the heuristic algorithm in this section to compute an ε that
is a good compromise. In the experiments in Section V,
we demonstrate that our heuristic strikes a good compromise
between accuracy and efficiency in all benchmarks.

Heuristic criterion for ε: CompLossMC-IS explores the
samples Yi in increasing order of i, i.e., in decreasing order of
their dPDM

C values. For a given value of SM (short for “Safety
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Margin”), CompLossMC-ISs goal is to select ε satisfying the
following property.

1) There is a sequence of SM sample points {YN+1, ...,

YN+SM} that constitute the safety margin (called
SafeMargin in the algorithm). For each point Y in the
margin

dTL
C (Y ) < Tc.

And ε satisfies

ε = Tc − 0.5(dPDM
C (YN+1) + dPDM

C (YN )).

The safety margin (heuristically) provides confidence that
the safety condition is satisfied for the remaining points for
which a TL simulation has not been carried out. This is
because all of these remaining samples have a value of dPDM

C

less than Tc − ε.
In Section V, we show that, using a reasonably small SM,

the heuristic criterion provides an estimator with negligible
bias. We further confirm that none of the NS points that have
a dTL

C value greater than Tc are ever missed by the heuristic.
CompLossMC-IS runs only SM additional TL simulations
beyond those needed for LossIS

N .1 The computational cost of
LossPDM,ε determination is unavoidable with the IS estimator
and is not due to the adaptive determination of ε.

Determining NS: Roughly speaking, the user provides the
algorithm with a number NS, and s/he expects to carry out
approximately Loss.NS TL simulations. Since the intended
use of our proposed approach is accurate, late-stage yield
determination, a rough estimate for Loss should be available.
If not, LossPDM can be used as a rough guide. It is important
to note that the choice of NS is guided by how small one
would like the variance of the LossIS estimator to be. The
purpose of NS is not to sample the parameter space in order
to determine a safe value of ε. ε is determined heuristically and
this heuristic is empirically justified separately. NS is chosen
so that roughly NS.Loss TL simulations are affordable, and
the variance of the IS estimator for NS.Loss samples is as
small as desired.

G. Discussion

A key benefit of the IS approach is that TL simulations are
avoided for discarded samples, i.e., when Xi results in a PDM
circuit delay estimate smaller than T ε

c (IPDM(T ε
c , Xi) = 0). The

improvement brought about by the IS estimator, however, goes
significantly beyond this. For the same number of samples N,
the IS estimator in (21) provides a much more accurate (with
significantly reduced variance) loss estimate than the standard
estimator in (18). Were it possible to use the ideal biasing
function f̃ideal, a zero-variance estimator would have been
obtained with a single sample. IS approach makes it possible to
explore the space between standard MC and this ideal. Using
an f̃ that approximates f̃ideal as closely as possible, IS both
reduces the number of TL circuit simulations required and
improves upon the standard estimator accuracy achieved for
the same number of TL simulations. The next section makes
this discussion precise.

1The overhead due to the additional SM simulations is taken into account
in the reported Speedup results in Section V.

IV. Convergence (Error) and Speedup Analysis

In this section, we present a precise analysis that quantifies
the variance reduction and the speed-up obtained when we use
the IS estimator instead of the standard MC estimator.

The error of an estimator is the deviance of the estimator’s
result from the actual loss as explained in Section II for a
general estimator. Next, the errors of the standard and IS MC
estimators are derived and the results are compared.

Theorem 1: The error of the standard estimator in (18)
obtained with N samples is

ErrorTL(N) =
2
√

LossTL.YieldTL

√
N

(24)

with more than 95% confidence.
Proof: See [20].

Theorem 2: The error of the IS estimator in (19) and (21)
obtained with N samples is given by

ErrorIS(N) =
2
√

LossTL.(LossPDM,ε − LossTL)√
N

(25)

with more than 95% confidence.
Proof: See [20].

In the derivation of the IS estimator error above, LossPDM,ε

was assumed to be a known deterministic quantity. However,
LossPDM,ε is estimated using the estimator in (23), and in
fact, it is a random quantity with a nonzero variance that
decreases proportionally to the number of samples K used
in (23). In order for the error derivation for the IS estimator
in (21) to be valid, the estimation of LossPDM,ε must be
performed by using a large enough number of samples in
(23) so that it has negligible variance. This would validate
its treatment as a deterministic quantity in the derivation of
the error equation for the IS estimator. The use of a large
number of samples in (23) is easily affordable, because no
TL simulations are performed, only simple evaluations of the
cheap delay models are needed. The results we present later
show that the theoretical error expressions derived here are in
excellent agreement with experimental data.

The error equations (24) and (25) that have been derived
with Theorem 1 and Theorem 2 for the standard and IS MC
estimators can be used to compare them. If the same number
of samples N is used for both methods (meaning an equal
number of TL simulations), then the ratio of the errors of the
estimators is given by

ErrorRatio(N) =
ErrorTL(N)

ErrorIS(N)
=

√
YieldTL

(LossPDM,ε − LossTL)
.

(26)
Alternatively, suppose a bound on the allowable estimation
error is given. The ratio of the number of samples (TL circuit
simulations) required by the two approaches to achieve this
same error bound is given by

Speedup =
NTL

NIS

=
YieldTL

(LossPDM,ε − LossTL)
(27)

which is obtained by solving ErrorTL(NTL) = ErrorIS(NIS) for
NTL

NIS
, which we call Speedup, since the number of samples used
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in the estimators determines the number of TL simulations
that need to be performed on the statistically critical paths of
the circuit. Based on (26) and (27) above, we note here that
Speedup can alternatively be computed with

Speedup =
ErrorTL(N)2

ErrorIS(N)2
(28)

as the ratio of the squared errors for the standard MC and IS
estimators with the same number of samples N = NTL = NIS ,
i.e., the same number of TL simulations.

Finally, we address a question that may arise in the mind
of an attentive reader. If Speedup in (27) is large, one might
conclude that TL simulations are not needed and LossPDM,ε

can simply be used as an accurate loss estimate. This conclu-
sion would be based on the observation that LossPDM,ε has
to be very close to LossTL if one can attain a large Speedup
in (27). However, this conclusion is not correct. LossPDM,ε

is computed using (23), where T ε
c = Tc − ε with ε as the

margin parameter. The margin parameter is determined by
an adaptive algorithm which performs TL simulations in its
search for the correct ε value. If LossPDM,ε is not computed
based on the ε value found by the CompLossMC-IS algorithm
described in Section III-F, then the resultant LossPDM,ε will
not be close to LossTL. Therefore, attaining a large Speedup
does not mean that the PDM model is by itself accurate enough
for loss estimation. The PDM model needs to be in some
sense “calibrated” or corrected with the TL simulations run
at the critical samples in the parameter space selected using
IS.

V. Results

A. Experimental Setup

We first describe our experimental setup in order to help
interpret our results better:

We present results on the ISCAS’85 benchmark suite [25]
in this paper. We use the 0.13µ standard cell library provided
by Graham Petley [26] for the transistor-level implementations
of the gates needed in order construct the benchmark circuits.
We have added some missing 5-, 8-, and 9-input gates to this
library, as they are needed for some of the circuits in the
ISCAS’85 benchmark suite. The layout information for the
circuits, i.e., relative locations of the gates on the layout for a
particular benchmark circuit (needed for the intra-die variation
model that captures spatial correlations), are extracted from
the information provided on the VLSI computer aided design
group web pages at Texas A&M University [27].

Two random transistor parameters, namely the transistor
gate length L and the threshold voltage Vt , are considered.
Both inter and intra-die variations for these parameters are
taken into account and a statistical model as described in
Section III-A is constructed. In this model, half of the variation
is allocated to inter-die variations and the other half to intra-die
variations [19], with a total 3σ/µ ratio of 15% for both of the
random parameters L and Vt . In the quad-tree model [19] that
captures spatial correlations, we use four grid levels (layers).
We allocate half of the variation to the top level that covers
the whole area of the circuit with one grid rectangle in order

to capture perfectly correlated inter-die variations. The other
three levels in the model capture the spatially correlated intra-
die variations and are allocated one sixth of the total variation
each. These allocations are done by appropriately choosing the
variances of the grid random variables in the quad-tree model.
As described in Section III-A, we use 85 random variables
in the quad-tree model per parameter. With two random
transistor parameters, L and Vt , the random variable vector X

defined in Section II-A has a dimension of 170 in all of our
experiments.

For each of the circuits in the ISCAS85 benchmark suite, we
determine a set of statistically critical paths using the method
described in Section III-C. We experiment with two timing
constraints for each circuit, Tc, low and Tc, high that result in
roughly 10% and 5% loss, respectively. When we use our
improved IS-based estimator for timing yield, the required
margin parameter ε that was introduced in Section III-E
is computed automatically using the algorithm described in
Section III-F. It is important to note that, as it computes ε,
this algorithm carries out all TL circuit simulations required
for computing the IS estimator.

With the results that we present in this section, we compare
the accuracy and the efficiency of our improved IS estimator
against the standard MC estimator. In doing so, we empirically
compute the error (variance) achieved for both of the loss
estimators. In order to measure the error of an estimator, we
perform M (to be quantified precisely) independent repetitions
of the same experiment (evaluation of the estimator). In each
independent run, we compute the loss estimates with the IS
estimator by using R (to be quantified precisely) independently
drawn samples from the PDF f (X) in the parameter space.
These M independent runs constitute the samples of the loss
estimator, and the variance and error of the loss estimator is
computed over these M samples. For the IS estimator, most
of the R samples are discarded as explained in Section III-E
based on the evaluation of the PDM equations, and a reduced
number (NIS on the average, showing negligible variation
from run to run) of TL simulations are performed. All of
these NIS simulations are performed as part of the iterative
algorithm for computing ε. In other words, NIS includes all
of the TL simulations required to compute ε and LossIS

N . In
evaluating the standard MC estimator, we choose NTL = NIS

samples randomly among the R samples in every set. For
the standard MC estimator, the results of TL circuit simu-
lations performed at every one of the NTL sample points are
used.

The LossPDM,ε value that is needed for computing the IS
estimator in (21) is computed using the PDM-based estimator
in (23) using all of the K = M × R sample points generated
during all of the M runs.

The Speedup that we report for the IS estimator over the
standard MC estimator represents the ratio of the number
of TL circuit simulations required by the standard MC and
IS estimators to achieve the same error, as given by (27).
Alternatively, Speedup is the ratio of the squared errors (vari-
ances) for the loss estimates obtained by the two estimators
with the same number of samples (TL simulations), as given
by (28).
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B. Experiments

1) Experiment A: Three Statistically Critical Paths: In this
experiment, for each benchmark circuit we choose three most
statistically critical paths which are identified using the scheme
described in Section III-C. We then perform the following:

We construct M sample sets, each with R samples drawn
from the PDF f (X), with a total of K = M ×R samples in the
random parameter space. In this experiment, we have used
M = 100 and R = 200 for Tc, low and M = 50 and R = 400
for Tc, high, for a total of K = 20 000 samples in each case.
For each set, we evaluate the IS estimator. The IS estimator
eliminates most of the samples in the set without performing
TL simulations, as explained in Section III-E. Loss estimates
obtained with the IS estimator and the number of actual TL
simulations run for each set, NIS , are recorded. All of the sets
have the same number of random samples in the parameter
space, R. NIS , corresponding to the number of non-discarded
samples at which TL simulations are run, does not show
much variation from set to set. For each experiment, up to SM
extra TL simulations that are used in order to heuristically
determine a safe value of ε are included in NIS . This allows
a fair comparison with standard MC. The variance of the loss
estimates over the M sets is computed as VARIS . The standard
MC estimator is evaluated for every set using NIS number of
samples chosen randomly among the R samples in each set.
Thus, loss with the standard MC estimator is evaluated using
the same number of TL simulations as the IS estimator, i.e.,
NTL = NIS . The variance of the M loss values computed with
the standard MC estimator is computed as VARTL.

With the construction above, we have NTL = NIS = N + SM.
Hence, we substitute VARIS and VARTL in (28) (in place of
squared errors, as the ratio of the variances of the estimators
is the same as the ratio of their squared errors) in order to
quantify the Speedup of the IS estimator over the standard
MC estimator

Speedup =
VARTL

VARIS
with NIS = NTL. (29)

The Speedup results, computed as described above for Tc, low

and Tc, high, for the ISCAS85 benchmark suite are presented
in Tables I and II. In these tables, the mean values for
LossIS and LossTL using the same number of TL simulations
(NTL = NIS = N + SM) are also shown. Furthermore, we also
report the loss values (labeled as Loss) computed using TL
simulations at all 20 000 samples, which can be regarded as
the real loss value. The mean value of the LossIS estimator
was on the average within 0.56% of the loss value computed
using TL simulations at all 20 000 samples. The mean value
of the LossTL estimator was on the average within 6.82% of
the loss value computed using TL simulations at all 20 000
samples.

As discussed in Section IV, Speedup in Tables I and II
represents the ratio of the number of TL simulations required
by the standard MC estimator to the number of TL simulations
needed by our proposed IS estimator in order to estimate the
loss of the circuit with the same error (accuracy). Alternatively,
if the same number of TL simulations are used for both of the
estimators, the estimation variance for loss will be Speedup

times less for our IS estimator. As seen in Tables I and II, our
accelerated yield estimator achieves on the average two orders
of magnitude Speedup over standard MC.

Contrasting absolute errors of estimators: In the method
we propose, while computing the loss estimator LossIS , ap-
proximate delay computed using the PDM method (with an
ε margin) is used by IS in order to achieve a low-variance
estimator. The question naturally arises as to how good an
estimator LossPDM is, and whether it itself could be used
for yield estimation. We contrast the absolute errors in the
following four estimators.

1) LossTL: The MC estimator.
2) LossIS: The MC estimator with IS.
3) LossPDM: The PDM estimator with no adjustment.
4) LossPDM,ε: The PDM estimator with the ε margin (i.e.,

with Tc − ε as the timing constraint).

We computed the loss estimated by each approach. The
results for Tc, low and Tc, high are presented in Tables III and IV,
respectively. Since it is computationally very costly to run TL
to convergence, we have taken the LossTL value computed
from 20 000 samples as the reference in each case. These
reference loss values are labeled as Loss in Tables III and IV
and correspond to the columns with the same label in Tables I
and II. The LossIS , LossPDM and LossPDM,ε values were
also obtained from a single run on the same 20 000 samples.
To compute LossPDM,ε we used the ε value found during
the LossIS computation. As seen in the tables, LossIS is
bias-free in all cases. This is to be expected, since LossIS

is an unbiased estimator in theory—a fact experimentally
demonstrated further in Experiments B and C below.

The value of the uncorrected PDM estimator LossPDM is
too far from LossTL to be acceptable for most benchmarks,
resulting in errors of 39.4% at most and 16.3% on the average.
It is important to note that, if one had carried out block-based
MC statistical timing analysis using our polynomial gate delay
models, this is the accuracy one would have obtained. While
delay values as computed by the PDM model only correlate
well with the actual values, in terms of the absolute value of
delay, they are far off. Thus, while the PDM model may serve
as a rough guide for timing and yield optimization, it is not
accurate enough for the numerical prediction of yield. This is
important as it justifies the use of our method as a final pass
of yield estimation.

The ε-corrected LossPDM,ε is a better estimator for loss.
The fact that LossPDM,ε is in many cases close to LossTL

might appear to suggest that yield prediction using PDM with
the ε correction is a sufficiently accurate and cheap method.
However, in order to compute the ε correction factor, all the TL
simulations required for computing LossIS have to be carried
out. Furthermore, LossPDM,ε is actually not close enough to
the actual loss value to be an accurate estimator in its own
right. Thus, it makes more sense to use more accurate and
provably unbiased estimator LossIS .

Validating heuristically-computed ε values: Recall that the
ε margin involved in the computation of LossIS is arrived
at using a heuristic in the algorithm CompLossMC-IS. In
order to validate the computed ε values, we performed the



1338 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2010

TABLE I

Speedup for Tc,low , M = 100 Sets, and R = 200 Samples Each

Bench. N + SM Loss Mean Mean ErrorTL (%) ErrorIS (%) Speedup

LossTL LossIS

c432 30 0.1158 0.1073 0.1145 51.05 5.15 100
c499 30 0.1225 0.1197 0.1220 48.90 3.52 194
c880 29 0.1132 0.1172 0.1122 53.50 5.81 86
c1355 32 0.1311 0.1297 0.1308 46.47 3.26 204
c1908 29 0.1175 0.1186 0.1164 51.39 4.38 140
c2670 30 0.1195 0.1210 0.1190 46.87 3.74 159
c3540 28 0.1109 0.1132 0.1104 54.11 4.30 160
c5315 29 0.1170 0.1172 0.1169 52.00 3.76 192
c7552 27 0.1054 0.1074 0.1044 57.29 3.99 210

TABLE II

Speedup for Tc,high , M = 50 Sets, and R = 400 Samples Each

Bench. N + SM Loss Mean Mean ErrorTL (%) ErrorIS (%) Speedup

LossTL LossIS

c432 32 0.0632 0.0500 0.0630 70.51 5.94 142
c499 22 0.0411 0.0300 0.0408 100.02 5.70 312
c880 27 0.0528 0.0519 0.0525 79.97 5.63 204
c1355 31 0.0644 0.0477 0.0644 68.60 4.81 203
c1908 33 0.0677 0.0642 0.0670 65.21 4.13 255
c2670 37 0.0788 0.0751 0.0781 55.92 3.00 352
c3540 35 0.0733 0.0651 0.0730 58.74 3.98 220
c5315 38 0.0788 0.0779 0.0784 56.82 3.49 269
c7552 30 0.0613 0.0640 0.0614 68.43 3.19 459

following checks.
1) Confirming that LossIS is unbiased: Results presented

in Fig. 3 in Section V-B3 below, and Tables III and IV
indicate that when a large number of samples NS is
used, LossIS is an unbiased estimator. Of more practical
importance is the fact that when LossIS is computed
with about 30 samples, the mean of LossIS is on the
average within 0.56% of the Loss value computed from
20 000 samples.

2) Exploring different values of ε: Recall that εabs(Tc) =
maxX such that dTL

C (X)≥Tc
(Tc − dPDM

C (X)) is the smallest
value of ε that guarantees the margin condition. As
the closest practical approximation to the ideal εabs, we
computed εabs using the equation above and letting X

range over the 20 000 sample points we had for each
benchmark. In order to investigate the sensitivity of the
yield estimator to the safety margin, we carried out the
following experiment. We forced our IS algorithm to
use a fixed value of ε. We varied this value of ε in the
range 0, 0.1 εabs, 0.2 εabs, ..., 0.9 εabs, εabs. We then
computed the percentage bias error in the mean of the
IS estimator for each of these values of ε, including the
one our heuristic computes. The results are shown in
Table V. The last column presents the results for the ε

our heuristic finds. The first observation is that, for each
benchmark, there is a value of ε below which the bias in
the loss estimator is too high. This value of ε is different
for each benchmark, but is in the 0.5–0.8 εabs range.
Above this value of ε, the bias is not very sensitive to
the particular value of ε. The second key observation is

that the heuristically found ε value for each benchmark
always results in an acceptable bias (error) in the loss
computed. This bias is less than 1% of the absolute loss.
Given that larger approximations are probably involved
in parameter variation modeling, etc., a bias error of 1%
of the loss is certainly negligible.

3) Validating the value of SM used: For every benchmark
and every run of CompLossMC-IS in Experiments A
and B, we confirmed that no run of CompLossMC-IS
missed a sample point X with dTL

C (X) > Tc in any of
the runs.
For each benchmark, we explored values of SM from 1 to
NS. We found that even very small values of SM result
in an acceptable error in the loss computation. Larger
values of SM result in values of ε closer to εabs but
this results in only very small differences in the actual
bias. In order to make sure that the ε value we choose
provides a good compromise between accuracy and high
speedup, and to keep the computational cost still low,
we pick SM to be 20% of the number of points that
we expect the IS approach to perform TL simulations
on. This amounts to SM = 4 for the examples in which
R=200 (Tc, low) and R=400 (Tc, high), and SM = 20 for
R = 1000 (Tc, low). With this choice, the bias error in each
benchmark is within approximately 1% of the absolute
loss.

2) Experiment B: Ten Statistically Critical Paths: In this
experiment, we randomly choose one of the ISCAS’85 bench-
mark circuits, and repeat the same experiment described above
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TABLE III

Loss for Tc,low , Four Different Estimators

Benchmark Loss LossIS LossPDM,ε LossPDM

c432 0.1158 0.1158 0.1418 0.0973
c499 0.1225 0.1225 0.1288 0.0803
c880 0.1132 0.1132 0.1288 0.0914
c1355 0.1311 0.1311 0.1379 0.1003
c1908 0.1175 0.1175 0.1280 0.1122
c2670 0.1195 0.1195 0.1254 0.1061
c3540 0.1109 0.1109 0.1196 0.0961
c5315 0.1170 0.1170 0.1271 0.1083
c7552 0.1054 0.1054 0.1134 0.1012

TABLE IV

Loss for Tc,high , Four Different Estimators

Benchmark Loss LossIS LossPDM,ε LossPDM

c432 0.0632 0.0632 0.0798 0.0514
c499 0.0411 0.0411 0.0426 0.0229
c880 0.0528 0.0528 0.0633 0.0405
c1355 0.0644 0.0644 0.0687 0.0454
c1908 0.0677 0.0677 0.0741 0.0652
c2670 0.0788 0.0788 0.0823 0.0693
c3540 0.0733 0.0733 0.0803 0.0613
c5315 0.0788 0.0788 0.0862 0.0724
c7552 0.0613 0.0613 0.0665 0.0595

(Tc, low), but with ten most statistically critical paths.2 In this
case, we obtain a Speedup of 147, which is almost the same
as the one obtained for the same benchmark circuit with only
three critical paths. The following values were obtained in this
experiment: N = 42, Loss = 0.1244, mean LossTL = 0.1306,
mean LossIS = 0.1239, ErrorTL = 47.91 %, ErrorIS = 3.95 %.
These results confirm that the Speedup achieved by our IS
estimator is not dependent on the number of statistically
critical paths considered for a circuit. The efficiency of the
IS estimator does not degrade if a large number of critical
paths are included in yield estimation, because the maximum
of the path delays in (1) for the overall circuit delay is
computed exactly, without employing approximations. This is
a key advantage of our technique. If an approximate maximum
operation is employed in computing the circuit delay from path
delays, the accuracy will degrade if a large number of paths
are considered.

3) Experiment C: Validating Theoretical Error Equations:
The purpose of this experiment is to empirically validate
the theoretical convergence analysis conducted and the error
estimation equations derived in Section IV for the standard
MC and IS estimators.

The results we present in Fig. 2 experimentally confirm the
error/convergence equations, (24) for the standard MC and
(25) for the IS estimators, that were derived in Section IV.
In this figure, a plot of loss error versus the number of TL
circuit simulations is shown for both estimators. The smooth
curves in this plot were obtained using the theoretical error
formulas. The two other curves were generated by computing

2We were not able to run this experiment for all of the circuits in the
benchmark suite due to the excessive computational resources required by the
standard MC technique against which we compare our proposed estimator.

Fig. 2. Convergence of standard MC and IS estimators.

loss estimate errors over 50 independent runs, each of which
explore a sample set size R (number of samples drawn from
the PDF f (X)) ranging from 1 to 1000. As explained before,
TL circuit simulations are performed at all of the sample
points for the standard MC estimator, but a reduced number
of simulations are performed for the IS estimator since most
of the samples are discarded based on the evaluation of the
PDM equations. We observe the excellent match between
the theoretical and experimental error curves in this plot,
validating the 1/

√
N dependency of error on the number of

TL simulations for both of the estimators. The significant
reduction in error that the IS estimator provides is also obvious
in this graph. The results in Fig. 2 were generated with
circuit c3540 in the ISCAS’85 benchmark suite (with similar
results for the other circuits). In this case, the LossPDM,ε

value that is needed for computing the IS estimator in (21)
is computed using the PDM-based estimator in (23) using all
of the 50 000 sample points generated during all of the 50
runs. In empirically computing the variances of both of the
estimators to generate the curves in Figure 2, we use the loss
value computed based on the standard MC estimator with TL
simulations at all of the 50 000 sample points in the parameter
space. Since the number of samples used here is very large,
we treat this loss value as the actual loss as if it was given to
us by an oracle.

As discussed in Section II and Section III, both the standard
MC and IS estimators are unbiased and their means converge
to the actual loss if a large number of samples are used. We
empirically confirm this with the plot in Fig. 3. The curves in
this plot were generated using the same experiment described
above that was used to generate the error curves in Fig. 2. In
order to generate the plot in Fig. 3, we simply compute the
means of the loss estimates obtained by the two estimators
over the 50 independent runs with varying number of samples,
whereas variances over these 50 runs were used for Fig. 2. We
can clearly observe in Fig. 3 that the IS estimator converges
to the actual loss value much earlier, with only a few number
of TL simulations.

Finally, we report the Speedup values achieved by our IS
estimator over the standard MC estimator in this experiment
where 1000 samples in each of the 50 independent runs were
used (M = 50 and R = 1000). The Speedup obtained for five
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TABLE V

% IS Estimator Bias Error Versus Margin Parameter ε (Tc,low, M = 100 Sets, R = 200 Samples Each)

0 0.1 εabs 0.2 εabs 0.3 εabs 0.4 εabs 0.5 εabs 0.6 εabs 0.7 εabs 0.8 εabs 0.9 εabs εabs ε (Heur.)
c432 15.98 12.44 9.19 6.51 3.74 2.00 1.08 0.62 0.14 0.07 0.07 1.10
c499 34.49 31.22 27.59 23.84 19.67 16.16 11.88 8.45 4.26 1.33 0.04 0.37
c880 19.27 16.88 14.02 11.31 8.08 4.96 3.22 1.44 0.49 0.08 0.02 0.85
c1355 23.46 21.02 18.81 16.52 13.93 10.99 7.46 4.40 1.73 0.35 0.04 0.20
c1908 4.73 3.53 2.67 2.29 1.59 1.03 0.79 0.57 0.42 0.21 0.09 0.93
c2670 11.18 9.54 7.83 6.57 4.94 3.53 2.12 1.26 0.55 0.17 0.03 0.40
c3540 13.35 11.40 9.82 7.23 5.50 4.30 3.01 1.07 0.46 0.24 0.09 0.43
c5315 7.44 6.24 4.90 3.26 2.08 1.13 0.42 0.18 0.03 0.09 0.09 0.11
c7552 4.40 3.68 2.74 2.01 1.31 0.85 0.36 0.10 0.15 0.16 0.10 0.87

Fig. 3. Mean loss computed with standard MC and IS estimators.

TABLE VI

Speedup of the IS Estimator Over Standard Monte Carlo

Experiment C
1) Three statistically critical paths
2) 1000 samples in 50 independent runs

Benchmark Speedup

c880 80
c1908 120
c2670 124
c3540 142
c5315 195

of the circuits in the ISCAS’85 benchmark suite are given in
Table VI. As seen, we obtain similar Speedup values here as
for the ones in Table I which were obtained with an experiment
where 200 samples in each of 100 independent runs were used.
Thus, the two orders of magnitude Speedup performance that
is achieved by the proposed IS estimator is confirmed again
with the results obtained here from a much larger data set.

VI. Conclusion

We have described an overall methodology that enables the
practical use of transistor-level MC simulations in estimating
the timing yield of a digital circuit as a final verification
before timing sign-off. The original, novel contribution of this
paper is a unique IS scheme for accelerating timing yield
computations based on transistor-level MC simulations. In
the proposed scheme, a cheap-to-evaluate but approximate
gate delay model is utilized in order to generate “important”

samples in the random parameter space at which transistor-
level simulations are run. The improved MC estimator based
on these important samples achieves the same accuracy as the
standard MC estimator but at a significantly reduced cost of
much fewer number of transistor-level simulations. The results
we present in this paper show that the achieved speed-up is
two orders of magnitude over standard MC.
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