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Abstract— Extensive research has been conducted on a
statistical timing analysis of digital integrated circuits in the exis-
tence of statistical parameter variations. However, the proposed
methods either lack accuracy or efficiency, which avoids coming
up with an industry standard tool. Despite this fact, there is a cer-
tain consensus that Monte Carlo (MC) methods are accurate, so
that they are called golden. In this paper, we propose novel tech-
niques to combine control variates with importance sampling in
order to come up with a new timing yield estimator as accurate as
SPICE-based standard MC (STD-MC) but much faster. The
performance of three different estimators, two of which are
proposed in this paper, is compared through experiments, and the
results show that the precise SPICE simulation-based STD-MC
method can be accelerated about 260× on the average without
sacrificing any accuracy.

Index Terms— Control variates (CV), importance sam-
pling (IS), Monte Carlo (MC), statistical timing analysis, timing
yield, variance reduction.

I. INTRODUCTION

STATISTICAL timing analysis aims at estimating timing
yield that is the fraction of chips that satisfy the timing

constraints in the presence of statistical parameter variations.
Accurate estimation of timing yield is crucial for integrated
circuit (IC) industry for the decision of further optimization
or manufacturing. There are various challenges for the esti-
mation of timing yield. A large number of random variables,
interdie, and intradie variations with spatial and topological
correlations, the necessity to work with non-Gaussian ran-
dom variables, and the nonlinear and differential relationship
between random circuit parameters and performance metrics
such as circuit delay are the main difficulties of timing yield
estimation problem.

For the last decade, extensive research has been conducted
on the statistical timing analysis, with an emphasis on a
statistical static timing analysis (SSTA), which is the sta-
tistical extension of static timing analysis. A comprehensive
review of the statistical timing analysis literature is presented
in [1] and [2]. A survey over IC industry professionals shows
the necessity of variation-aware design and SPICE simulations
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considering parameter variations [3]. The inclusion of the
transistor-level (TL) path-based statistical timing analysis
into the reference design flow by Taiwan Semiconductor
Manufacturing Company is another sign for the necessity of
the statistical analysis [4].

The widely accepted golden method to estimate timing yield
is Monte Carlo (MC) estimation, especially when it is based
on precise TL SPICE simulations. MC estimation dates back
to 1946 [5] and formally proposed in [6]. Today, this golden
method is used as reference by most of the statistical timing
analysis papers, yet its computational complexity makes it
impossible to be used solely. There is considerable effort for
accelerating the MC method using variance reduction tech-
niques, such as importance sampling (IS) [7] and control vari-
ates (CV) [8], because the accuracy of MC-based estimation
is crucial and very difficult to be reached by its alternatives.
There are plenty of books describing the variance reduction
techniques even by researchers of different academic disci-
plines [9]–[13]. Singhee et al. [14] state that the MC-based
statistical timing analysis is believed to be too slow despite
the lack of rigorous studies to support this belief. This paper
refutes this idea and shows that MC need not be slow similar
to the argument in [15].

This paper is definitely not the first one in the literature that
uses variance reduction techniques in order to increase the effi-
ciency of MC analysis of statistical phenomena in electronic
circuits. The initial efforts were made for estimating the yield
of analog circuits. One of the earliest papers published in [16]
separately implements IS, stratified sampling, and CV tech-
niques to estimate general yield of analog circuits, such as
low-pass filter. Around that time, Soin and Rankin [17] present
a classical CV-based method employing a shadow model for
estimating yield of analog circuits. Recent papers [18], [19] on
the same topic propose CV and a sample reduction technique
called latin hypercube sampling (LHS), respectively.

The problem of timing yield estimation and an incremental
timing analysis of digital ICs can also be dealed with the appli-
cation of variance reduction techniques to MC-based SSTA.
A comprehensive work in [20] employs different variance
reduction techniques for this purpose. The first method in
this paper is an enhanced version of the quasi-MC (QMC)
method [21] with about six times speedup. The disadvantage
of QMC/LHS approach is the inability to handle high dimen-
sionality and almost negligible speedups it offers. The second
method in this paper is the order statistics-based CV similar
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to the one in [22]. However, this technique is prone to the
underestimation of the timing yield and also the speedup it
offers is almost similar to the QMC-based method. The last
method of this paper is based on classical CV, but this time
CV is used to estimate mean, variance, and skewness of the
critical delay probability distribution as in [23]. Another work
in [24] combines QMC and LHS to obtain the statistical
distribution of circuit delay, whereas the work in [25] further
combines stratified sampling with QMC and LHS for the
same purpose, also addressing incremental timing analysis.
This class of papers aims to improve the speed of the gate-
level static timing analysis-based MC to compete against fast
SSTA methods. This brings the necessity to tolerate some
errors and makes some assumptions on the circuitlike Gaussian
arrival times and linearity, which contradicts with some of the
major reasons behind using an MC estimator and result in
inherently biased estimators regardless of sample size [20].

Another type of problem that variance reduction techniques
are extensively used is SRAM failure analysis. Similar to [26],
Kanj et al. [27] apply a technique called mixture IS to estimate
SRAM failure probabilities. Singhee and Rutenbar [28] argue
that QMC is better than LHS, where LHS is better than
conventional MC. They test their method on SRAM or flip-flop
circuits, resulting in 2× to 8× speedup. A machine learning-
based sample reduction method called statistical blockade
is used to accelerate the SRAM failure analysis in [29],
whereas IS is used to calculate SRAM robustness resulting
in a seven-order run-time improvement [30]. SRAM failure is
a relatively low-dimensional problem [22]. Problems, such as
the difficulty to adapt more complex digital circuits and the
inability to cope with the curse of dimensionality resulting in
low speedups, must be solved to further apply these methods
to more complex digital circuits.

Our aim is to accelerate timing yield estimation of digital
ICs without sacrificing the accuracy of TL SPICE simulations-
based standard MC (STD-MC). Similar to the statement
in [31], the approach proposed in this paper is based on
the premise that, given the magnitude of process parameter
variations and the nonlinear dependence of gate and circuit
delay on these variations, the only sufficiently reliable and
accurate method for final timing yield verification before sign
off is the TL circuit simulation. However, we realize that the
TL MC estimation of timing yield may never become efficient
enough for use in a loop for timing optimizations. As such,
the MC timing yield estimation method that we propose in
this paper is meant not as a replacement for fast block-based
SSTA methods, but rather, as a complement to them.

In [31], we devise a methodology to estimate timing yield of
digital ICs as accurate as SPICE-based STD-MC. The method
relies on IS in conjunction with an approximate gate delay
model called a polynomial delay model (PDM). Although
the resultant IS estimator obtains about 150× speedups
with respect to STD-MC, the efficiency of the IS estimator
decreases by decreasing timing yield values as expected.

This paper is a significant improvement over the work
in [31]. We first construct a timing yield estimator based
on the well-known CV technique in conjunction with PDM
and TL SPICE simulations. Then, using this CV estimator

as the first step, we combine CV and IS in a novel manner
to propose a new timing yield estimator called CV with IS
estimator. Besides the combination of two different variance
reduction techniques, this paper solves two crucial issues to
obtain an efficient estimator: a selection of a good biasing
distribution and the development of a heuristic algorithm to
detect margins. The proposed solutions to these issues and
the way CV and IS are combined define the performance of
the resultant CVIS estimator. The experiments verify that the
accuracy of the theoretical derivations and CVIS estimator
achieves a speedup of 260× on the average with respect
to STD-MC.

The rest of this paper is organized as follows. Section II
formulates the problem and reminds the IS estimator.
The theory of the estimators is presented in Section III.
The section starts with the CV estimator, it continues with the
CVIS estimator, and finally, it presents the margin detection
heuristic. Section IV shows the results, where the performance
of the estimators is reported with respect to STD-MC esti-
mator. The theoretical variance derivations of this paper are
also verified in that section. Finally, the conclusion is drawn
in Section V.

II. BACKGROUND AND PRELIMINARIES

A. Problem Formulation

Satisfying timing requirements for a circuit corresponds
to having smaller delays than a predefined timing constraint
value, which is shown as Tc throughout this paper. X is a
random variable vector, each element of which corresponds
to a random variable in the circuit. The joint probability
density function (pdf) corresponding to X is represented
by f (X).

d M
C (X) represents maximum circuit delay, computed by a

method M and when the random variables inside the circuit are
set according to the values given by X . The indicator variable
I M (Tc, X) is defined as

I M (Tc, X) =
{

1, if d M
C (X) > Tc

0, if d M
C (X) ≤ Tc.

(1)

The most accurate circuit delay computation method is the
industry standard TL SPICE simulation. If the circuit delay is
computed by TL SPICE simulations, we put TL instead of M
in the definitions. Using these definitions, the best estimation
for timing yield, which is equal to the probability that a
manufactured chip will satisfy the timing requirements, can
be defined as one minus the expected value of the indicator
variable, as shown in

YieldTL = 1 − LossTL = 1 −
∫

�
I TL(Tc, X) f (X)d X (2)

where � is the whole random parameter space, and LossTL is
the probability that a manufactured chip will not satisfy the
timing constraint. We call YieldTL the actual yield and LossTL

the actual loss, because they depend on accurate TL SPICE
simulations. However, it is not possible to compute this
integral analytically.
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The MC method is widely used to estimate such integrals.
In (3), MC estimator for LossTL in (2) can be seen

LossTL
N = 1

N

N∑
i=1

I TL(Tc, Xi ) (3)

where Xi is a sample drawn from the joint pdf f (X) and
N is the number of sample points used in estimation. This
estimator is called STD-MC estimator throughout this paper.
It is well known with its accuracy, where it requires almost no
approximations in estimating the timing loss value. However,
it requires a large number of samples to be accurate. This, in
turn, means too many TL SPICE simulations each of which
is computationally too costly resulting in very slow estimation
performance.

Expected value of an MC estimator is the actual value the
estimator converges to, when an infinite number of sample
points are used for the estimation. It equals to the actual timing
loss (LossTL) for an unbiased estimator as in (3). Variance of
an MC estimator is the expected squared distance between the
estimator’s resultant estimate and the actual value. For timing
loss estimation problem and for an unbiased MC estimator
using method M inside, it becomes as shown in (4). Variance
value shows the convergence rate of the estimator and is
very useful to compute the speedup of an MC estimator over
another one as will be discussed later. It is also shown in [31]
that the absolute difference between the estimator’s resultant
estimate and the actual loss value cannot be higher than two
times the square root of the estimator’s variance with more
than 95% confidence

Var
{
LossM

N

} = E
{(

LossM
N − LossTL)2}

. (4)

The variance of the well-known STD-MC estimator is
shown in (5) [31]. This equation also shows the dependence
of variance on the number of samples

Var
{
LossTL

N

} = LossTL · YieldTL

N
. (5)

B. Importance Sampling Estimator

IS can be used to speed up the estimator in (3) without
losing accuracy. According to this method, Bayrakci et al. [31]
propose the IS estimator shown by (6), to estimate timing loss

LossIS
N = LossADM,ε

N

N∑
i=1

I TL(Tc, Xi ) (6)

where all sample points are drawn from another
distribution f̃ (X), shown in (7), instead of f (X)

f̃ (X) = I ADM
(
T ε

c , Xi
)

f (X)

LossADM,ε
. (7)

ADM represents a fast but approximate delay model used
to approximately capture the variations of gate delays with
respect to the circuit parameter variations. Accordingly,
LossADM,ε is the loss value, estimated based on delays com-
puted by ADM and using a timing constraint with ε margin,
i.e., T ε

c . This loss value is not very accurate instead it is a loose
approximation, computed by the MC estimator in (8), where

fast ADM is used instead of TL circuit simulations enabling
the use of a huge number of N

LossADM,ε = 1

N

N∑
i=1

I ADM(
T ε

c , Xi
)

(8)

where N , in the left-hand side of the equation, is omitted as it
is a huge number. The T ε

c in these equations represents Tc −ε,
where ε is a safety margin computed by an adaptive heuristic
algorithm again proposed in [31]. This margin is needed in
order to satisfy the condition that for every sample point, X ,
if I TL(Tc, X) is 1, then I ADM

(
T ε

c , X
)

is also 1. This condition
is necessary to have an unbiased loss estimator based on IS, as
shown in (6). The expected value of the IS estimator is shown
to be equal to the actual loss, i.e., LossTL. For this estimator,
the theoretical variance, which represents the convergence rate
of the estimator, is shown in [31]

Var
{
LossIS

N

} = LossTL · (LossADM,ε − LossTL)

N
. (9)

When the variance of the IS estimator is compared with the
variance of the STD-MC estimator in (5), it is seen that the
numerator in (9) has LossADM,ε − LossTL instead of YieldTL

which is equal to 1−LossTL in (5). As a result, the variance of
the IS estimator has to be smaller than or equal to the STD-MC
estimator as LossADM,ε is smaller or equal to 1 theoretically.
Whereas, practically LossADM,ε is closer to the actual loss
as it is the loss value estimated by (8), which explains why
IS estimator has much smaller variance than the STD-MC
estimator for a fixed number of samples (N).

III. PROPOSED ESTIMATORS

STD-MC estimator is the most accurate statistical timing
loss estimator provided that an enough number of samples are
used with the estimator. The main problem with the STD-MC
estimator is that it requires too many costly TL SPICE
simulations to converge to the actual loss, LossTL. Therefore,
converging to an accurate value is not enough for an estimator
to be good. The goodness of a loss estimator depends on two
quantities: the accuracy of the value it converges to and its
convergence rate to that value.

1) Mean of the Estimator: The estimator must converge to
the actual value when a larger number of samples are
used. That means that the expected value of the estimator
must be equal to the actual value it estimates, i.e., LossTL

in our case. Such estimators are called unbiased. This
condition is very important, because if an estimator has
a large bias, no matter how many sample points are
utilized, and the resultant estimates are far from the
actual result.

2) Variance of the Estimator: The convergence rate of the
estimator must be high, so that even with relatively
small number of sample points (N) used inside the
MC estimator, the estimates are not far from the actual
value. This means that the variance (error) of the esti-
mator using a fixed N must be low. In other words, an
estimator with a smaller variance requires less number
of samples (simulations) to estimate actual value with
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a fixed error tolerance. Therefore, decreasing the vari-
ance of an estimator transforms into a speedup in the
estimation.

Accurate estimates can be obtained with fewer samples
(simulations) only if the estimator is both unbiased and has a
higher convergence rate. A biased estimator results in the lack
of accuracy, whereas slow convergence results in a need for
more samples.

In this section, CV estimator, which is based on CV solely
is proposed as an initial step. Then, we present the prime
CVIS estimator that is based on a novel combination of
CV with IS. The aim is to increase the convergence rate of
the STD-MC estimator without introducing bias and much
extra cost. Throughout this section, the presented estimators
are theoretically analyzed in terms of mean and variance to
see whether the estimates converge to the actual loss and at
what rate they converge.

A. Control Variates Estimator

The CV estimator is constructed utilizing an approximate
but very efficient gate delay model (ADM) like the PDM [31]
in accordance with the CV variance reduction technique.
We start with LossTL integral in (2) and apply it CV by adding
and subtracting I ADM(Tc, X) as shown in

LossTL =
∫

�
(I TL(Tc, X) − I ADM(Tc, X)

+ I ADM(Tc, X)) f (X)d X

=
∫

�
I ADM(Tc, X) f (X)d X

+
∫

�
(I TL(Tc, X) − I ADM(Tc, X)) f (X)d X. (10)

The first integral is equal to LossADM by definition. For the
second integral, MC estimation is applied, as shown in

LossCV
N = LossADM + 1

N

N∑
i=1

(I TL(Tc, Xi ) − I ADM(Tc, Xi )).

(11)

To compute LossADM, (8) is used but with no margin, i.e.,
ε = 0 and with a huge number of sample points (N).
The computation of LossADM is not computationally costly,
because the computation of I ADM(Tc, Xi ) does not depend on
SPICE TL simulations, and instead, it relies on approximate
delay models with very low evaluation costs.

We could instead add and subtract β · I ADM(Tc, X) in (10),
where β is to be defined optimally, as shown in [17]. However,
it is impossible to compute this optimum value, because it is
a function of the covariance of I ADM(Tc, X) and I TL(Tc, X),
which is unknown a priori as I TL(Tc, X) requires costly
TL simulations. Estimating this value using a small test
set is a method, but using different β values for different
estimation runs causes a bias, which lowers the speedup of
the CV estimator. Optimum β is unknown a priori but can
be computed if a huge number of TL simulations are per-
formed to collect the indicator variable values. The resultant
optimum β values for ISCAS-85 circuits are almost equal to 1,

where the most distant value to 1 comes out to be 0.989.
Therefore, similar to [17] and [20], β is taken to be one in
this paper.

1) Mean of the CV Estimator: As it is discussed in the
beginning of this section, the mean of an estimator is an
indicator of its accuracy. Below, we compute the mean of the
CV estimator.

Theorem 1: The expected value of the CV estimator in (11)
is equal to the actual loss value

E
{
LossCV

N

} = LossTL. (12)
Proof: Considering constants in (11), expected value

becomes

E
{
LossCV

N

} = LossADM

+ 1

N

N∑
i=1

(E{I TL(Tc, Xi )} −E{I ADM(Tc, Xi )}).

(13)

From (2), we know that

E{I TL(Tc, X)} =
∫

�
I TL(Tc, X) f (X)d X

= LossTL (14)

where � is the whole feasible parameter space. Similarly

E{I ADM(Tc, X)} =
∫

�
I ADM(Tc, X) f (X)d X

= LossADM. (15)

Combining these together, we get

E
{
LossCV

N

} = LossADM + LossTL − LossADM = LossTL

(16)

which completes the proof. �
This concludes that the CV estimator is unbiased, which

means that while the number of sample points (N) increases,
the result of the CV estimator converges to the actual loss.
Now, the question is how fast it converges, which is answered
next.

2) Variance of the CV Estimator: In this section, the vari-
ance of the CV estimator for a fixed number of sample points
is derived, so that it can be compared with other estimators in
terms of converging rate.

Theorem 2: The variance of the CV estimator in (11) has
a lower bound shown with

Var
{
LossCV

N

}
≥ |LossTL − LossADM| · (1 − |LossTL − LossADM|)

N
. (17)

Proof: There is no variance on LossADM, because it
is computed using a huge number of sample points for
once, and this LossADM value is used for all different
estimations.
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Since the summation terms in (11) are independent, the
variance of the CV estimator can be written as

Var
{
LossCV

N

} = Var

{
1

N

N∑
i=1

(I TL(Tc, Xi ) − I ADM(Tc, Xi ))

}

= 1

N
Var{I TL(Tc, X) − I ADM(Tc, X)}

= 1

N
(Var{I TL(Tc, X)} + Var{I ADM(Tc, X)}
− 2Cov{I TL(Tc, X), I ADM(Tc, X)}).

(18)

We must compute two variance values and the covariance
in (18). Using (14), we get

Var{I TL(Tc, X)} = E{(I TL(Tc, X) − LossTL)2}
= E{I TL(Tc, X)} − LossTL2

= LossTL(1 − LossTL). (19)

Using (15), we get

Var{I ADM(Tc, X)} = E{(I ADM(Tc, X) − LossADM)2}
= E{I ADM(Tc, X)} − LossADM2

= LossADM(1 − LossADM). (20)

Using (14) and (15), we can write

Cov{I TL(Tc,X), I ADM(Tc,X)} = E{I TL(Tc,X) · I ADM(Tc, X)}
− LossTLLossADM. (21)

I TL(Tc, X) and I ADM(Tc, X) can be either 0 or 1. The
expected value in (21) is the integral of f (X) over the region,
where both the indicator variables are 1. Therefore, using (14)
and (15), we can write the relationship below

E{I TL(Tc, X) · I ADM(Tc, X)} ≤ min(LossTL, LossADM).

(22)

Combining (19)–(22) as shown in (18) and after some
trivial computations, we get the relationship shown in
Theorem 17. �

Theorem 17 gives a lower bound for the variance of the
CV estimator. The greater or equal operator in (17) becomes
an equality, if for every sample point I ADM(Tc, X) is 1, then
I TL(Tc, X) is 1 or alternatively if the reverse is true.

CV estimator is advantageous in the sense that it does
not need any margin detection heuristic to be unbiased in
contrast to IS estimator. However, when the variance lower
bound of the CV estimator shown by (17) is compared with
the variance of the previously proposed IS estimator in (9), it
can be deduced that the CV estimator is not as good as the
IS estimator, because, in practice, LossTL is expected to be
smaller than (1 − |LossTL − LossADM|).
B. Control Variates With Importance Sampling Estimator

In order to have a faster estimator than the IS estimator, we
combine IS and CV techniques in a novel manner to construct
the new CVIS estimator. We start with (10). For the difference
integral in this equation, we apply IS technique by introducing

the biasing distribution f̃ (X). The first integral is known to be
equal to LossADM. As a result, the following equation comes
out:

LossTL = LossADM

+
∫

�
(I TL(Tc, X) − I ADM(Tc, X))

f (X)

f̃ (X)
f̃ (X)d X.

(23)

The integral in (23) can be estimated using the MC method.
The resultant CVIS timing loss estimator, which utilizes
a combination of CV and IS, can be constructed, as
shown in

LossCVIS
N = LossADM

+ 1

N

N∑
i=1

(I TL(Tc, X̃i ) − I ADM(Tc, X̃i ))
f (X)

f̃ (X)

(24)

where X̃i represents the sample point drawn from f̃ (X)
instead of f (X). Here, the key issue is the selection of a
good f̃ (X). This new distribution must have the following
properties to be a regular pdf resulting in an unbiased loss
estimator.

1) Integral of f̃ (X) (
∫
� f̃ (X)d X) over the whole parameter

space must be equal to 1 as it is a pdf.

2) f̃ (X) must be nonzero everywhere I TL(Tc, X) −
I ADM(Tc, X) is nonzero. Otherwise, (23) cannot be
equal to (10).

We propose the following f̃ (X):

f̃ (X) = (I ADM(Tc − ε, X) − I ADM(Tc + δ, X)) f (X)

LossADM,ε − LossADM,δ
(25)

where ε and δ are margins that are determined by a heuristic
introduced in Section III-C. LossADM,ε and LossADM,δ are
defined in

LossADM,ε =
∫

�
I ADM(Tc − ε, X) f (X)d X (26)

LossADM,δ =
∫

�
I ADM(Tc + δ, X) f (X)d X. (27)

Let us look if f̃ in (25) satisfies the above two properties∫
�

f̃ (X)d X

=
∫
�(I ADM(Tc − ε, X) − I ADM(Tc + δ, X)) f (X)d X

LossADM,ε − LossADM,δ

= LossADM,ε − LossADM,δ

LossADM,ε − LossADM,δ
= 1. (28)

Therefore, property 1) above holds. This makes f̃ in (25) a
regular pdf.

For property 2) to hold, the following condition must
be satisfied. For every where I TL(Tc, X) − I ADM(Tc, X) is
nonzero, then I ADM(Tc − ε, X) − I ADM(Tc + δ, X) must be
nonzero. This is why we introduce the margins ε and δ. The
margins must be large enough to satisfy property 2). This can
be done by satisfying two conditions.
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1) For every point I TL(Tc, X) is 1, I ADM(Tc − ε, X) is
also 1.

2) For every point I ADM(Tc + δ, X) is 1, I TL(Tc, X) is
also 1.

These two conditions are called margin conditions throughout
this paper. There is a tradeoff in margin selection. Selecting
very large ε and δ margins surely satisfies the margin con-
ditions. However, it slows down the convergence rate of the
resultant CVIS estimator. The reason for that will be clarified
later in this section. Ideally, the margins must be the minimum
values satisfying the margin conditions. Heuristic proposed
in Section III-C is used to smartly select these margins
sufficient enough to satisfy margin conditions.

After f̃ (X) in (25) is substituted into (24), the resultant
CVIS estimator is shown in

LossCVIS
N = LossADM + LossADM,ε − LossADM,δ

N

×
N∑

i=1

(I TL(Tc, X̃i ) − I ADM(Tc, X̃i )) (29)

where N sample points are drawn according to the f̃ (X)
distribution instead of f (X). The LossADM, LossADM,ε and
LossADM,δ in (29) are computed using a huge number of
samples and (8) with no margin, ε margin, and δ margin,
respectively. It should be noted that having computed the
circuit delays according to ADM for all samples, it is very
easy and fast to compute these three loss values using (8)
with different margins. In order to measure the goodness of
the CVIS estimator, the mean and the variance of the estimator
in (29) are derived next.

1) Mean of the CVIS Estimator: CVIS estimator is an
unbiased estimator eventually converging to the actual loss
provided that the margin conditions hold. The detailed deriva-
tion of the expected value for this estimator is given below.

Theorem 3: Provided that the margin conditions hold, the
expected value of the CVIS estimator in (29) is equal to the
actual loss value

E
{
LossCVIS

N

} = LossTL. (30)

Proof: Considering constants in (29), expected value
becomes

E
{
LossCVIS

N

} = LossADM + LossADM,ε − LossADM,δ

N

×
N∑

i=1

E{I TL(Tc, X̃i )} − E{I ADM(Tc, X̃i )}

(31)

where N samples are drawn from f̃ (X). Therefore, we can
write

E{I TL(Tc, X)} =
∫

�
I TL(Tc, X) f̃ (X)d X

=
∫ B

A I TL(Tc, X) f (X)d X

LossADM,ε − LossADM,δ
. (32)

When f̃ (X) in (25) is substituted into (32), the boundaries
can be changed considering the nonzero regions of f̃ (X). A is

the boundary, where I ADM(Tc − ε, X) changes from 0 to 1,
and B is the boundary where I ADM(Tc + δ, X) changes from
0 to 1. Provided that the margin conditions explained above
are satisfied, the integral in the numerator of (32) becomes
equal to LossTL − LossADM,δ

E{I ADM(Tc, X)} =
∫

�
I ADM(Tc, X) f̃ (X)d X

=
∫ B

A I ADM(Tc, X) f (X)d X

LossADM,ε − LossADM,δ
. (33)

Similar to (32), the integral in (33) with boundaries given by
A and B becomes equal to LossADM − LossADM,δ. When we
substitute the integrals in (32) and (33) and then substitute
these two equations into (31), we get

E
{
LossCVIS

N

} = LossADM + LossTL − LossADM (34)

which finalizes the proof. �
This theorem means that if the number of sample points N

is increased, the estimate of the CVIS estimator converges to
the actual loss value eventually. This is about the bias of the
estimator. The second most important question is how fast it
converges to the actual loss, which is answered next.

2) Variance of the CVIS Estimator: Below, we derive the
variance of the CVIS estimator as a measure of the conver-
gence rate of the estimator to its mean, which is the actual
loss as proved above.

Theorem 4: Provided that the margin conditions hold, the
variance of the CVIS estimator in (29) has a lower bound
shown with

Var
{
LossCVIS

N

}
≥ |LossTL − LossADM|

× LossADM,ε − LossADM,δ − |LossTL − LossADM|
N

.

(35)
Proof: Similar to what we explained inside the proof of the

CV estimator variance, LossADM, LossADM,ε, and LossADM,δ

are fixed constants after computed for once. From (29) and
independency of the summation terms, it can be deduced
that

Var
{
LossCVIS

N

} = (LossADM,ε − LossADM,δ)2

N2 × N

× Var{I TL(Tc, X) − I ADM(Tc, X)} (36)

where X is shown from f̃ (X) in (25) and

Var{I TL(Tc, X) − I ADM(Tc, X)}
= Var{I TL(Tc, X)}︸ ︷︷ ︸

σ̃I TL

+ Var{I ADM(Tc, X)}︸ ︷︷ ︸
σ̃I ADM

− 2 Cov{I TL(Tc, X), I ADM(Tc, X)}︸ ︷︷ ︸
σ̃I TL,I ADM

. (37)

In the remaining part of the proof, the three expressions in (37)
will be derived and then combined, but before that we write
down the expected values for I TL(Tc, X) and I ADM(Tc, X),
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where the random variable X is from f̃ (X) in (25). Directly
from (32) and (33)

E{I TL(Tc, X)}︸ ︷︷ ︸
μ̃

I TL

= LossTL − LossADM,δ

LossADM,ε − LossADM,δ
(38)

E{I ADM(Tc, X)}︸ ︷︷ ︸
μ̃

I ADM

= LossADM − LossADM,δ

LossADM,ε − LossADM,δ
. (39)

Now, the unknown quantities σ̃I TL , σ̃I ADM , and σ̃I TL,I ADM

in (37) can be computed

σ̃I TL = μ̃I TL − μ̃2
I TL (40)

σ̃I ADM = μ̃I ADM − μ̃2
I ADM (41)

σ̃I TL,I ADM = E{(I TL(Tc, X) − μ̃I TL )(I ADM(Tc, X) − μ̃I ADM)}
= E{I TL(Tc, X)I ADM(Tc, X)}︸ ︷︷ ︸

μ̃
I TL I ADM

−μ̃I TL μ̃I ADM (42)

μ̃I TL I ADM =
∫

�
I TL(Tc, X)I ADM(Tc, X) f̃ (X)d X (43)

=
∫ B

A I TL(Tc, X)I ADM(Tc, X) f (X)d X

LossADM,ε − LossADM,δ
(44)

where I TL(Tc, X) and I ADM(Tc, X) can be either 0 or 1. The
integral in (44) is the integral of f (X) over the region where
both the indicator variables are 1. Provided that the margin
conditions hold, we can write the relationship below

μ̃I TL I ADM ≤ min(LossTL, LossADM) − LossADM,δ

LossADM,ε − LossADM,δ
. (45)

We substitute σ̃I TL , σ̃I ADM , and σ̃I TL I ADM computed above
into (37)

Var{I TL(Tc, X) − I ADM(Tc, X)}
≥ μ̃I TL − μ̃2

I TL + μ̃I ADM − μ̃2
I ADM

− 2(μ̃I TL I ADM − μ̃I TL μ̃I ADM ). (46)

Substituting the variables in (46) and combining with (36),
we get

Var
{
LossCVIS

N

}
≥ (LossADM,ε − LossADM,δ)2

N

×
(

LossTL + LossADM − 2min(LossTL, LossADM)

LossADM,ε − LossADM,δ

− (LossTL − LossADM)2

(LossADM,ε − LossADM,δ)2

)
. (47)

Whether the minimum of the duple is LossTL or LossADM,
this expression turns into (35). �

Previously in this section, it was stated that the margin
conditions require larger margins to be satisfied, whereas
the convergence rate is affected negatively with the
increasing margins. This can be observed from (35).
When the margins are larger, the difference between the

Algorithm 1 detectMargins (NS, SM, Tc)

LossADM,ε and LossADM,δ gets bigger, which causes an
increase in the variance of the CVIS estimator for a fixed N .

C. Detection of ε and δ Margins

We must compute a minimum ε-margin and a minimum
δ-margin that satisfy the two margin conditions, explained
in Section III-B. In addition, this must be done without
introducing much extra cost. In order to heuristically compute
these two margins, we propose detectMargins, the pseudocode
of which is shown in Algorithm 1.

detectMargins first starts by drawing NS sample points (Xi )
from the joint probability distribution f (X). For each sample
point Xi , the delay of the circuit is computed using fast ADM.
After that it sorts the sample points according to their respec-
tive circuit delays computed by ADM. Here, note that loss
point means that the circuit delay corresponding to that sample
point exceeds the Tc value and a yield point is vice versa.
As we utilize two different circuit delay computation methods,
namely, ADM and TL simulations, a sample point may be
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Fig. 1. Imaginary 15 point sample set example.

a loss point for a method but may be a yield point for another
method.

Without loss of generality, assume that a sorted list of
an imaginary 15 sample point set is shown in Fig. 1. The
points are sorted according to their respective circuit delays
computed by ADM. In addition, assume that NP (nearest point
index) is seven for this imaginary set, and therefore, Y7 is the
sample point whose ADM circuit delay is closest to the timing
constraint Tc. The algorithm starts with Y7 computes the circuit
delay using the TL simulation and then looks whether Y7 is a
loss point for the TL simulation. It proceeds rightward in Fig. 1
and counts the number of consecutive sample points that are
yield points for both ADM and TL simulations. This number
corresponds to the number of elements in the Sa f eMarginε

set. If this number exceeds SM, then the algorithm infers
without going further that it reached inside the yield region
where both I TL(Tc, X) and I ADM(Tc, X) are equal to 0. The
algorithm comes back SM sample points and fixes Tε at the
middle of the delays corresponding to two sample points
staying at the boundary. The ε value is determined according
to this Tε value, where Tε = Tc − ε. After detecting ε margin,
algorithm turns back to Y7 but this time it moves leftward
and counts the number of consecutive points, which are loss
points for both ADM and TL simulations. Similarly, when
Sa f eMarginδ set exceeds SM points, the algorithm infers
that the loss region, where both I TL(Tc, X) and I ADM(Tc, X)
are equal to 1, is reached. Then, the algorithm computes Tδ,
which is equal to Tc + δ as it does for Tε . Fig. 1 shows the
corresponding Tε and Tδ values for the imaginary 15 point
sample set.

It can be seen that if the ε and δ margins are computed
by this heuristic algorithm, at least for the drawn sample
points, both margin conditions in Section III-B can hold.
Setting a bigger SM value increases the level of confidence.
However, increasing SM may affect the performance of the
algorithm, because this algorithm requires additional 2 × SM
TL simulations, which will not be used in loss estimation,
instead they are used for margin detection as explained. The
remaining TL simulations are not additional cost, because they
are required by the CVIS loss estimator. This is due the fact
that the points used in the summation of (29) are drawn from
f̃ (X) in (25) and this distribution is nonzero only in between
Tδ and Tε. We experimentally see that even for SM = 1, the
results are promising, which will be quantified in Section IV.

Selection of a larger NS results in better loss estimates
as expected. Only a portion of NS sample points requires
TL simulations. Our experiments practically indicate that when
PDM is used as an approximate delay model, this portion is
about one-tenth of the selected NS for all benchmark circuits.
One way similar to the devised in [31] would be to select NS,
such that it is ten times the maximum number of affordable
TL simulations. Alternatively, when there is a strict limit
on the number of affordable TL simulations, an adaptive
method to decide upon NS can be developed as follows.
Initially, NS is set to be equal to the maximum number of
affordable TL simulations. Until the number of TL simulations
reaches this affordable amount, NS can adaptively be increased
by drawing new sample points. The number of additional
sample points can be determined by observing the ratio of the
TL simulations and NS value at each iteration of the algorithm.
This would require no repeated costly TL simulations provided
that the TL simulation results for the previous sample points
are stored.

IV. RESULTS

In this section, the traditional STD-MC estimator and the
previously proposed IS estimator [31] are compared with the
CV and CVIS estimators proposed in this paper. Different
experiments are carried out to record the convergence rate of
the estimators. In addition, the theoretical variances derived in
this paper, and the proposed heuristic algorithm is analyzed
empirically.

A. Experimental Setup

Among all process parameters, the most significant ones
are gate length (L) and transistor threshold voltage (Vth) [32].
The variation amounts are set according to the International
Technology Roadmap for Semiconductors 2011 report [33], in
which the effective gate length 3σ/μ ratio is 12%, whereas the
threshold voltage 3σ/μ ratio is 20% for the 45-nm technology.
Half of the variation comes from interdie and the other
half from intradie components [34]. Spatial correlations are
considered by using a four-level quad tree model [35], which
models variations with spatial correlation utilizing 170 inde-
pendent random variables for both L and Vth. The ISCAS-85
benchmark circuits [36] are synthesized using NanGate 45-nm
cell library [37]. A modified version of NgSpice [38] sim-
ulator is used for TL SPICE simulations. Experiments are
performed on a system with two Xeon E5-2620, six-core,
2-GHz processors, and 24 GB of RAM.

As an approximate delay model (ADM) to be used inside
IS, CV, and CVIS estimators, we utilize the PDM in [31] that
depends on very fast polynomial delay and slope equations.
PDM can compute path delays in negligible times when
compared with the TL SPICE simulations. Similarly, any fast
delay model like the quadratic model in [39] that computes
the delay of a gate given the random parameter values for that
gate could be used.

For a fixed number of samples, the accuracy of a loss esti-
mator depends on how far its estimates are from the actual loss.
The actual loss, i.e., LossTL, is computed using 50 000 sample
STD-MC estimator shown in (3), which solely relies on precise
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TABLE I

Speedup OVER STD-MC FOR DIFFERENT ESTIMATORS AND DIFFERENT ACTUAL LOSS VALUES

TL SPICE simulations. After having computed the actual
loss value, in order to obtain the variance of an estimator
around this actual loss value, we do the following. First, we
perform loss estimations repetitively with the same number of
samples but each time with a different sample set. We call the
number of independent repetitions as R. The results constitute
independent estimates of the same estimator using the same
number of samples. Then, we compute the variance around
the actual loss value over these R estimates. Not only the
convergence rate but also the bias of the estimator, if there is
any, can be understood by investigating the variance around
the actual loss. For the sake of fairness, the estimators, whose
variances will be compared with each other, must utilize the
same number of sample points (TL simulations) for each
estimate. By this way, the effect of the number of sample
points can be excluded.

Let us assume two estimators called estimator A and estima-
tor B. After fixing the number of samples/simulations, the ratio
of the variance of estimator A over the variance of estimator B
tells us how much faster estimator B is than estimator A,
because it shows how many times less samples/simulations
estimator B requires than estimator A for a fixed accuracy
level [31]. Therefore, this ratio can be called sample reduction
obtained by utilizing estimator B instead of estimator A.
Similarly, we prefer calling it the speedup of estimator B with
respect to estimator A. In Table I, we report the Speedup
of the estimators with respect to the traditional STD-MC
estimator. The speedup that we report in the table for an
estimator can be interpreted in two ways.

1) It represents the reduction of the required number of
TL circuit simulations to achieve the same predefined
accuracy (error) with the STD-MC estimator.

2) Speedup shows how much smaller the variance of that
estimator is than the STD-MC estimator when they both
perform the same number of TL simulations.

B. Performance of the Proposed Estimators

In our experiments, we empirically compare the perfor-
mance of three estimators: 1) IS estimator in (6); 2) CV estima-
tor in (11); and 3) CVIS estimator in (29). In all experiments,
the SM parameter in Algorithm 1 is taken as 1, which is
the smallest value that can be given to SM. The number of

estimation repetitions, R, is set as 100 for each experiment.
Four different experiments are performed at each of which a
different timing constraint, and Tc value is set to four different
values, such that the actual loss comes out to be 5%, 10%,
15%, and 20%, respectively. Table I shows the speedup over
STD-MC for each experiment, for each estimator, and for each
benchmark circuit. That is to say, it shows how many times less
samples (TL simulations) than STD-MC are required by the
proposed estimators for the same accuracy with the STD-MC
estimator. For instance, for c1355 and when the actual
loss is 10%, the CVIS estimator requires about 148 times
less TL simulations than the traditional STD-MC estimator
with the same accuracy. The results show that the proposed
CVIS estimator is the fastest estimator with an average
of 260× speedup. The second best estimator is IS estimator
with 160×, and the worst one is CV estimator with relatively
very small speedup values. Considering that the computer
setup given in the beginning of this section, 50 000 sample
STD-MC requires 278 h of computation when averaged over
benchmark circuits, whereas if the CVIS estimator is preferred,
this time decreases to about 1 h. Certainly, there is an
additional cost in each of the IS, CV, and CVIS estimators
because of computing dADM

C (X) values for all of the sample
points, which is 50 000 in our case. It is not considered in
Table I, because ADM computations require only very low cost
polynomial equation computations, which are negligible when
compared with TL simulations and even can be performed in
parallel with the simulations [31].

It can be seen from Table I that the performance of
the IS estimator significantly decreases, while the actual
loss increases. This rapid decrease trend is not observed
for the CVIS estimator. CVIS estimator may result in the
same, even better speedups with increasing actual loss values.
This is another reason to prefer CVIS estimator over
IS estimator.

Another observation is that the speedup values are better in
some circuits than the others and this nearly holds whether the
estimator is IS, CV, or CVIS. The ADM results in approximate
delays, yet its accuracy can affect the speedup of the estimator
utilizing it. Because each of the three estimators utilizes PDM
as its ADM, the speedup follows a similar pattern for each of
the three estimators.
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Fig. 2. Bar graph of the loss estimated by ADM solely and the mean of the
CVIS estimator for each benchmark, where actual loss is 10%.

Fig. 3. Theoretical versus experimental variance for CV estimator.

One could wonder the performance of an MC estimator
that is based on PDM solely. Actually, we have used such an
estimator to compute LossADM that is required for CV and
CVIS estimators, as explained in Sections III-A and III-B.
This LossADM estimator is the same one shown in (8) with
one difference that there is no ε margin, i.e., T ε

c is replaced
with Tc. The LossADM estimator is very fast as it requires
no TL simulations. However, PDM is an approximate method
and lacks accuracy in estimating timing loss. This is shown
in Fig. 2. Fig. 2 (light gray bars) shows the LossADM values,
computed using the 50 000 sample PDM-based MC estimator.
The actual loss in the experiment is 10%. It is clearly seen that
the LossADM estimates that are computed by the PDM-based
MC are far off the actual loss, which shows that PDM alone
cannot provide accurate results.

Fig. 2 also shows the mean of the CVIS estimator
over 100 repetitive estimations for each benchmark circuit
and for again 10% actual loss experiment. The mean of the
CVIS estimator shown by dark gray bar is almost equal to the
actual loss for each of the benchmark circuits. This empirically
shows that the CVIS estimator is unbiased and our heuristic
algorithm explained in Section III-C worked well even when
SM is set to its smallest value, which is 1.

C. Verification of the Theoretical Variance

In this section, we verify the theoretical variance derivation
in Section III with the empirical data. Fig. 3 compares the
theoretical variance of CV estimator with the experimental
variance results for the 10% actual loss experiment. Fig. 4 is
the same plot corresponding to CVIS estimator. The x-axis
shows the number of samples utilized in the estimation and
y-axis is the resultant variance. In these figures, the theoretical

TABLE II

EFFECT OF SM ON SPEEDUP

variance values of the corresponding estimator are plotted
in circles, and the experimental variance values, which are
computed by averaging the sum of the euclidian distances
of the estimates around the actual loss value, are plotted
in asterisks. For CV estimator, we plotted the theoretical
and experimental variance values only for c1355 and c3540
circuits, but other benchmark circuits produce similar plots.
The plots not only illustrate the inverse relation between the
number of samples and the variance of the resultant estimates,
but also experimentally verify the accuracy of the theoretical
CV and CVIS estimator variances shown by (17) and (35).

D. Quantification of the Heuristic Algorithm

In this section, the heuristic algorithm and the effect of SM
on the resultant speedup of CVIS estimator are investigated.
Table II shows the speedup of CVIS estimator over STD-MC
for 10% actual loss experiment. It should be reminded that we
compute variance around the actual loss for both STD-MC and
CVIS estimators to get the speedup values in Tables I and II.
Therefore, any bias of the CVIS estimator is taken into
consideration for the reported speedup amounts. Table II
clearly shows the slow reduction trend of the speedup due to
the increasing SM values. This is expected as increasing SM
increases the additional overhead of the heuristic algorithm.
Another observation is that the speedup very slowly increases
for c432 while going from SM = 1 to SM = 2 and
SM = 3. The bias of CVIS estimator for c432 and SM = 1
experiment is 0.002 as the mean of the CVIS estimator for this
experiment is 9.8% instead of 10%. For this case, increasing
SM decreases this bias and overcomes the speedup reduction
due to SM increase. This rare situation can also be seen
for some other experiments like c7552 while switching from
SM = 1 to SM = 2 experiment.

The optimal decision of SM value depends on the ability of
the selected ADM to capture the variation of circuit delay with
respect to the variation of the statistical circuit parameters.
In this paper, we select PDM as our approximate delay model
and our SM = 1 experiments show that the bias of the CVIS
estimator, which is worst (0.002) for c432 circuit, is negligible,
as shown in Fig. 2. In addition, the speedup results in Table II
experimentally show us that when PDM is used, it is better
to set SM to lower values and tolerate the negligible bias
introduced by low SM values, instead of increasing SM for
removing all bias.
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Fig. 4. Theoretical versus experimental variance of CVIS estimator for the benchmark circuits where actual loss is 10%. x-axis is the number
of TL simulations used for estimation and y-axis is the amount of variance.

TABLE III

MARGIN VALUES IN PICOSECONDS AVERAGED OVER 100 SETS

AND WHILE SM IS INCREASED

Increasing SM value does not require to repeat the exper-
iment, and only additional simulations must be performed
according to SM increase. As a result, the user can implement
heuristic algorithm in an adaptive manner, such that SM is
increased one by one until a maximum number of affordable
simulations is reached or the resultant ε and δ margins
converge. The convergence of the margins does not guarantee
but enhances confidence that there is no need to increase
SM further. Another improvement would be to use different
safety points for ε and δ margins, so that if the algorithm
has already converged in δ margin, then all remaining avail-
able TL simulations can be used to compute ε margin and
vice versa.

Table III contains the ε and δ margin values in picosec-
onds corresponding to different SM values. Please note that

the timing constraint (Tc) values are in a range between
700 and 1600 ps for the benchmark circuits. The resul-
tant δ margins are the same for all SM values. On the other
hand, rising SM results in an increase in ε margins, which
exhibits a convergence as expected. The unbalanced ε and δ
margins are the result of the fact that PDM, as an approximate
delay model, has a delay bias with respect to the circuit delays
computed by TL simulations. Our algorithm clearly handles
this imbalance. For, especially, large SM values, it is clear
from the table that using different numbers of safety points for
computing ε and δ could be advantageous, as suggested above.

V. CONCLUSION

A novel methodology to combine CV with IS is presented
for the solution of timing yield estimation problem, and it
is both theoretically and practically verified in this paper.
CV and CVIS estimators are constructed based on CV and
the combination of CV with IS, respectively. ISCAS-85 bench-
mark circuits are relatively simple containing about 1200 gates
on the average and 3500 gates at most. Using CVIS esti-
mator at the final stage verification still requires hours of
computations, but instead of hundreds of hours that STD-MC
would require. The experimental results show that the resultant
CVIS estimator takes one step further than the IS estimator,
and it can accelerate the traditional STD-MC estimator about
260 times on the average. The distinctive method to combine
CV with IS and the derivations proposed in this paper can
be used in different aspects to gain faster estimators. More-
over, other variance reduction techniques, such as stratified
sampling, can further be combined with the techniques in the
paper.

ACKNOWLEDGMENT

The author would like to thank S. Tasiran and A. Demir for
their valuable advice and suggestions.



2798 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 8, AUGUST 2016

REFERENCES

[1] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical
timing analysis: From basic principles to state of the art,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 4, pp. 589–607,
Apr. 2008.

[2] C. Forzan and D. Pandini, “Statistical static timing analysis: A survey,”
Integr., VLSI J., vol. 42, no. 3, pp. 409–435, Jun. 2009.

[3] A. Gupta. Variation Aware Custom IC Design Report 2011.
[Online]. Available: http://www.solidodesign.com/files/variation-aware-
custom-design-survey-2011.pdf, accessed Feb. 2, 2016.

[4] M. LaPedus, TSMC Rolls 40-nm Design Flow, EETimes, Jun. 2008.
[Online]. Available: http://www.eetimes.com/document.asp?doc
_id=1168660

[5] N. Metropolis, “The beginning of the Monte Carlo method,” Los Alamos
Sci., vol. 15, no. 584, pp. 125–130, 1987.

[6] N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Amer. Statist.
Assoc., vol. 44, no. 247, pp. 335–341, 1949.

[7] H. Kahn and T. E. Harris, “Estimation of particle transmission by
random sampling,” Nat. Bureau Standards Appl. Math. Ser., vol. 12,
pp. 27–30, Jun. 1951.

[8] E. C. Fieller and H. O. Hartley, “Sampling with control variables,”
Biometrika, vol. 41, pp. 494–501, Dec. 1954.

[9] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods
[Methuen’s Monographs on Applied Probability and Statistics]. London,
U.K.: Methuen Publishing, 1965.

[10] B. L. Nelson, “On control variate estimators,” Comput. Oper. Res.,
vol. 14, no. 3, pp. 219–225, 1987.

[11] N. Madras, Lectures on Monte Carlo Methods (Fields Institute for
Research in Mathematical Sciences Toronto: Fields Institute mono-
graphs). Providence, RI, USA: AMS, 2002.

[12] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods. New York, NY,
USA: Wiley, 2008.

[13] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo
Method, vol. 707. New York, NY, USA: Wiley, 2011.

[14] A. Singhee, S. Singhal, and R. A. Rutenbar, “Practical, fast Monte Carlo
statistical static timing analysis: Why and how,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), Nov. 2008, pp. 190–195.

[15] L. Scheffer, “The count of Monte Carlo,” in Proc. ACM/IEEE
Int. Workshop Timing Issues Specification Synth. Digit. Syst. (TAU),
Feb. 2004, pp. 1–6.

[16] D. E. Hocevar, M. R. Lightner, and T. N. Trick, “A study of vari-
ance reduction techniques for estimating circuit yields,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 2, no. 3, pp. 180–192,
Jul. 1983.

[17] R. S. Soin and P. J. Rankin, “Efficient tolerance analysis using con-
trol variates,” IEE Proc. G, Electron. Circuits Syst., vol. 132, no. 4,
pp. 131–142, Aug. 1985.

[18] P.-F. Desrumaux et al., “An efficient control variates method for
yield estimation of analog circuits based on a local model,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), New York, NY,
USA, Nov. 2012, pp. 415–421.

[19] J. Jaffari and M. Anis, “On efficient LHS-based yield analysis of
analog circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 30, no. 1, pp. 159–163, Jan. 2011.

[20] J. Jaffari and M. Anis, “Advanced variance reduction and sampling
techniques for efficient statistical timing analysis,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 29, no. 12, pp. 1894–1907,
Dec. 2010.

[21] H. Niederreiter, “Quasi-Monte Carlo methods and pseudo-random num-
bers,” Bull. Amer. Math. Soc., vol. 84, no. 6, pp. 957–1041, 1978.

[22] J. Jaffari and M. Anis, “Timing yield estimation of digital circuits using
a control variate technique,” in Proc. Quality Electron. Design (ISQED),
Mar. 2009, pp. 382–387.

[23] J. Jaffari and M. Anis, “Practical Monte-Carlo based timing yield
estimation of digital circuits,” in Proc. Design, Autom., Test Eur. Conf.
Exhibit., 2010, pp. 807–812.

[24] V. Veetil, D. Sylvester, and D. Blaauw, “Efficient Monte Carlo based
incremental statistical timing analysis,” in Proc. 45th ACM/IEEE Annu.
Design Autom. Conf (DAC), Jun. 2008, pp. 676–681.

[25] V. Veetil, K. Chopra, D. Blaauw, and D. Sylvester, “Fast statistical
static timing analysis using smart Monte Carlo techniques,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 6, pp. 852–865,
Jun. 2011.

[26] L. Dolecek, M. Qazi, D. Shah, and A. Chandrakasan, “Breaking the
simulation barrier: SRAM evaluation through norm minimization,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2008,
pp. 322–329.

[27] R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and
its application to the analysis of SRAM designs in the presence of rare
failure events,” in Proc. 43rd ACM/IEEE Design Autom. Conf. (DAC),
Jul. 2006, pp. 69–72.

[28] A. Singhee and R. A. Rutenbar, “Why quasi-Monte Carlo is better than
Monte Carlo or Latin hypercube sampling for statistical circuit analysis,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 11,
pp. 1763–1776, Nov. 2010.

[29] A. Singhee and R. A. Rutenbar, “Statistical blockade: Very fast statistical
simulation and modeling of rare circuit events and its application to
memory design,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 28, no. 8, pp. 1176–1189, Aug. 2009.

[30] G. Chen, D. Sylvester, D. Blaauw, and T. Mudge, “Yield-driven near-
threshold SRAM design,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 18, no. 11, pp. 1590–1598, Nov. 2010.

[31] A. A. Bayrakci, A. Demir, and S. Tasiran, “Fast Monte Carlo estimation
of timing yield with importance sampling and transistor-level circuit
simulation,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 29, no. 9, pp. 1328–1341, Sep. 2010.

[32] D. Sylvester, K. Agarwal, and S. Shah, “Invited paper: Variability in
nanometer CMOS: Impact, analysis, and minimization,” Integr., VLSI J.,
vol. 41, no. 3, pp. 319–339, May 2008.

[33] International Technology Roadmap for Semiconductors (ITRS) Report
2011 Edition. [Online]. Available: http://www.itrs.net/, accessed Feb. 2,
2016.

[34] J. Cong, P. Gupta, and J. Lee, “Evaluating statistical power optimiza-
tion,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 29,
no. 11, pp. 1750–1762, Nov. 2010.

[35] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for
intra-die process variations with spatial correlations,” in Proc. Int. Conf.
Comput. Aided Design (ICCAD), 2003, pp. 900–907.

[36] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational
benchmark circuits and a target translator in FORTRAN,” in Proc. IEEE
Int. Symp. Circuits Syst., Jun. 1985, pp. 695–698.

[37] NanGate 45 nm Open Cell Library. [Online]. Available: http://www.
nangate.com/, accessed Feb. 2, 2016.

[38] NgSpice Circuit Simulator. [Online]. Available: http://ngspice.
sourceforge.net/, accessed Feb. 2, 2016.

[39] V. Khandelwal and A. Srivastava, “A quadratic modeling-based frame-
work for accurate statistical timing analysis considering correlations,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 2,
pp. 206–215, Feb. 2007.

Alp Arslan Bayrakci (M’10) received the
B.S. degree in electrical and electronics engineer-
ing from Middle East Technical University, Ankara,
Turkey, in 2004, and the Ph.D. degree in computer
engineering from Koç University, Istanbul, Turkey,
in 2010.

He has been with Gebze Technical University,
Gebze, Turkey, since 2011. His current research
interests include statistical timing analysis, hardware
security, and computer-aided design methodologies.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


