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Abstract—Since the statistical timing analysis of VLSI circuits
became a necessity, the accuracy of the proposed statistical static
timing analysis (SSTA) methods is checked with the Monte Carlo
(MC) estimation methods, which are called golden. However, the
MC methods can have very different levels of accuracy depending
on the model used beneath the method. In this paper, we build
and compare three different MC yield estimators to see the effect
of the models used beneath the estimator on the accuracy.

I. INTRODUCTION

With the shrinking sizes of VLSI technology, the variation
of device parameters like gate length and threshold voltage
result in significant deviations from the prescribed timing
specifications of the integrated circuits (IC). As a result,
estimating the timing yield of the produced ICs is a challeng-
ing problem. SSTA methods that are developed to estimate
yield considering the parameter variations, are still unable to
overcome the accuracy and efficiency issues and there is no
widespread acceptance for any of the SSTA algorithms. This
is because SSTA methods inherently make assumptions and
approximations which decrease their accuracy.

The best timing yield estimation method in terms of
accuracy is the Monte Carlo (MC) estimation with big enough
number of sample points. It is called golden and universally
used to test the accuracy of the proposed SSTA methods
in the literature. In this sense, the accuracy of MC is very
crucial. However, there is an ambiguity about MC methods.
All MC statistical timing analysis methods can not be called
golden in terms of accuracy. The most accurate timing yield
estimations can be gathered by MC based on transistor level
(TL) SPICE simulations (TL-MC). But, because of the unbear-
able cost of TL simulations, most of the SSTA proposals in
the literature perform MC based on block (gate) level static
timing analysis (BL-MC) for checking the accuracy of the
proposed SSTA method. The proposals in the literature that
use TL-MC to check the accuracy either use a small number
of sample points [1] or perform experiments on very small test
circuits [2].

In this paper, we investigate the relationship between the
chosen method beneath the MC yield estimators and the accu-
racy of the resultant yield estimate. For this purpose, we pro-
duce two BL-MC methods; one based on linear (BL-MC-Lin)
and the other on quadratic models (BL-MC-Quad). We also
perform TL-MC as a reference genuine golden method.

II. MC BASED TIMING YIELD ESTIMATION

Loss is the fraction of the circuits that fail to satisfy the
timing constraint. Then, Yield, the fraction of the circuits that
fulfill the timing constraint is simply given by 1−Loss.
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The random variables that represent the statistical varia-
tions in the circuit are collected into an n-dimensional vector
X , with a joint probability density function (PDF) denoted by
f (X). An indicator random variable IM(X) can be defined as
follows

IM(X) =

{
1 if dM

C (X)> Tc

0 if dM
C (X)≤ Tc

(1)

where dM
C (X) is the circuit delay computed by method M and

Tc is the maximum acceptable delay or timing constraint. This
indicator variable indicates whether the delay of the circuit
meets the timing constraint for a given realization of the
random variables in X . Then, MC estimator for loss is written
as in (2).

LossM = (1/N)
N

∑
i=1

IM(Xi) (2)

where M is the method used to compute dM
C (X), Xi’s are

the drawn samples according to f (X) and Tc is the timing
constraint.

Without loss of generality, we assume in this paper two
different sources of variability: transistor gate length L and
threshold voltage Vt . If these two are considered as the random
transistor parameters, then the delay of a gate r can be
represented as

dM
r (Lr,Vt r,hr, InSr) (3)

where Lr is the gate length and Vt r is the threshold voltage
value for the transistors in gate r, hr is the fanout and InSr is
the input slope for gate r. dM

r is the delay of gate r computed by
method M. Actually, we also consider high to low, low to high
delays and high to low, low to high output slopes separately
which makes a total of four different equations for each cell
in the standard cell library. Circuit delay in (1) is computed
by using the delays of the individual gates, shown by (3).

MC yield estimators use the same equation shown in (2)
to estimate Loss but they differ by the method M they prefer
to compute the gate delay shown in (3). In this paper, we will
investigate three different MC yield estimators:

1) Transistor Level Monte Carlo (TL-MC): This MC esti-
mator computes gate delays and circuit delay for each sample
point by performing the industry standard, precise transistor
level (TL) SPICE simulations. Therefore the method M can
be replaced with T L, i.e. it estimates LossT L. In this paper,
we use 50,000 sample points with TL-MC estimator so that
the resultant LossT L estimate is assumed as actual loss value.
This actual loss is used to check the accuracy of other MC
estimators.
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2) Block Level Monte Carlo Based on Linear Models
(BL-MC-Lin): This MC estimator computes gate delays and
thus the circuit delay for each sample point using linear gate
delay model in (4). For each cell in the standard cell library,
we compute the coefficients (ai) of (4) by the least squares
fitting.

dLin
r (X) =

4

∑
i=1

aiPi (4)

where Pi is Lr, Vt r, hr and InSr for i = 1, 2, 3, 4 respectively.
The linear delay model is used by several SSTA algorithms in
the literature [3]. In BL-MC-Lin estimator the method M in
(3) is replaced with Lin and the loss it estimates by (2) can be
written as LossLin.

3) Block Level Monte Carlo Based on Quadratic Models
(BL-MC-Quad): This MC estimator computes gate delays and
thus the circuit delay for each sample point using quadratic
gate delay model in (5).

dQuad
r (X) =

4

∑
i=1

biPi +
4

∑
i=1

4

∑
j=1

ci jPiPj (5)

where Pi is as explained above, ai’s bi’s and ci j’s are the
coefficients computed by least squares fitting. The method M
in (3) is replaced with Quad and the loss it estimates by (2)
can be written as LossQuad .

III. COMPARISON OF MC ESTIMATORS

The results are presented on the ISCAS’85 benchmark
suite. Two random transistor parameters, namely the transistor
gate length L and the threshold voltage Vt , are considered.
Both inter and intra-die variations with spatial correlations are
considered. In this model, a total 3σ/μ ratio of 15% is assumed
for both of the random parameters [4].

First of all, 50,000 sample points are generated according
to the inter and intra die variation model. Using these sample
points and the MC estimator in (2), three MC loss estimations
are performed: LossT L by TL-MC, LossLin by BL-MC-Lin and
LossQuad by BL-MC-Quad estimator. We have chosen a timing
constraint Tc for each benchmark circuit such that the actual
loss is a reasonable value around 20% for each circuit.

TABLE I. COMPARISON OF LOSS ESTIMATIONS (%) COMPUTED BY

THREE DIFFERENT METHODS: TL-MC, BL-MC-LIN, BL-MC-QUAD.

LossT L LossLin LossQuad Accuracy
(Actual Loss) (%) (%) (%) Degradation

c432 19.9 1.2 18.2 11.0
c499 20.1 1.3 15.5 4.1
c880 20.1 13.6 17.8 2.8

c1355 19.9 3.4 17.5 6.9
c1908 20.0 9.6 21.5 7.3
c2670 20.0 3.3 19.4 28.5
c3540 19.9 11.1 19.3 14.7
c5315 20.1 10.5 20.7 17.7
c7552 20.0 6.4 20.9 15.4

Table I shows us that the delay model used inside the MC
estimator affects the accuracy of the resultant loss estimate
dramatically. LossLin is 13.3 far and LossQuad 1.67 far from
the actual loss on the average. The last column in Table I
refers how much worse or farther is LossLin loss estimate
than the LossQuad loss estimate. It can be seen that MC

estimator based on linear models (BL-MC-Lin) is about 12
times on the average and 28.5 times at most farther to the
actual loss than the MC estimator based on quadratic delay
models (BL-MC-Quad). With the results presented in the table,
it is clear that the MC estimator with the linear delay models
inside, gives misleading results. Several SSTA methods in the
literature prefer linear delay models for efficiency and if they
also use same models for the ’golden’ MC method used to
check accuracy, this results in a misleading accuracy outcome.
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Fig. 1. Three losses: LossT L computed by TL-MC, LossLin computed by
BL-MC-Lin and LossQuad computed by BL-MC-Quad. x-axis represents the
timing constraint that is iterated to get different loss results. Circuit is c1355.

Instead of setting the timing constraint Tc to a fixed value,
we have also iterated it, starting from the values causing more
than 90% loss to the values causing 0% loss. The resultant
loss estimations corresponding to different MC estimators are
plotted in Figure 1. LossLin estimate is much worse than
LossQuad almost everywhere on the plot.

In conclusion, the accuracy, i.e. the unbiasedness of an MC
estimator depends strongly on the underlying delay model. The
resultant error of the MC estimator cannot be decreased by
increasing the number of samples (N) because the error is
due to the bias of the estimator. This brings the necessity to
quantify the accuracy of the MC method before using it as
a ’golden’ method to check the accuracy. The quantification
and details of the MC methods that are used to verify must be
included in the papers proposing a new SSTA method.
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