
PLODE: Precise Logic and Delay Simulator for Structural Verilog

Gokce Nur Erer, Alp Arslan Bayrakci

Gebze Technical University
gokce.erer@gmail.com, abayrakci@gtu.edu.tr

Abstract
Spice simulator is famous with its precision and preferred as
a final stage verification tool. However, it needs a different
circuit description than Verilog, and also its direct results
are not meaningful in terms of speed and accuracy without
further analysis. Commercial tools are proprietary and us-
ing them for conversion to Spice deck and analysis of the
Spice results is costly in terms of both finance and effort.
Precise Logic and Delay (PLODE) is a novel, research ori-
ented, open source tool that can convert structural Verilog
to Spice deck, perform simulations at the desired process
technology node, analyze and visualize the results in terms
of delay and functional accuracy. In order to help path de-
lay based research, it can also extract a path from the circuit
and simulate it without the need for a sensitizing input pair.
The tool is tested and verified on ten combinational and two
sequential circuits.

1. Introduction
Spice transistor level circuit simulator [1] is a widely ac-

cepted precise tool for circuit simulations. More improved,
GPU accelerated versions are produced by leading EDA compa-
nies like Synopsys and Cadence. Also, having the open source
versions like ngspice [2] makes it an essential component for
academic research, where it is very hard, expensive and time
consuming to work on actual manufactured chips. For a wide
range of research areas like timing analysis, hardware security,
device modeling, delay and power based methods, etc., it is in-
dispensable especially for final verification purposes as widely
done accompanying Monte Carlo technique.

The commercial CAD tools have embedded software that
can perform complex tasks including different levels of abstrac-
tion and different stages like design, simulation and layout ex-
traction. Yet, they are proprietary and can not be modified, need
profession and a full process design kit to be usable. From an
academic research perspective, they may not be compulsory as
most of their tasks may not be required for a particular research
problem. The well-known Modelsim [3] simulator can be ob-
tained free of charge accompanying Intel FPGAs with design
size limitations. On the other hand Logisim [4] is an open
source tool that enables graphical circuit design and can sim-
ulate the design for functional accuracy similar to Modelsim.
But both Modelsim and Logisim do not perform precise transis-
tor level simulations revealing the actual behavior of the circuit
in terms of delay and functionality.

The gEDA [5] project is initiated to fill the gap in free EDA
software and it contains different tools for schematic capture,
netlist generation and utilizes Spice for simulation. However, it
is PCB oriented and does not analyze the Spice simulation re-
sults either. VIS [6] is an open source circuit synthesis and ver-
ification tool, developed by University of California, Berkeley.

But simulation is only for proof of concept similar to Modelsim.
Yosys [7] and Odin [8] are open source Verilog synthesis tools,
focused solely on behavioral Verilog synthesis to netlist. How-
ever, these tools do not perform a comprehensive conversion
from structural Verilog to Spice, analysis of Spice simulation
outcomes for the extraction of all required results like realistic
output delays and functional accuracy.

In this paper, we propose Precise Logic and Delay
(PLODE) simulator: a research-oriented, free, open source tool
that can perform the conversion, simulation and analysis of dig-
ital circuits written in structural Verilog (Fig. 1). It accepts both
combinational and sequential circuits. Supports hierarchical
Verilog with nested module instantiations. It can flatten or pre-
serve the hierarchy. The simulation part is handled by ngspice,
therefore the limitations (like simulation duration) and the pre-
cision of PLODE, are not different from Spice. PLODE per-
forms analysis on Spice simulations to deduce meaningful re-
sults for output delays and logic values important for speed and
accuracy of the design. In order to help path delay based re-
search, PLODE can also extract a given path from the circuit
with all its side gates and simulate this single path to compute
its path delay. We test the tool on ISCAS’85 [9] test circuits,
on a 32 bit adder written in hierarchical Verilog, and on two
ISCAS’89 [10] circuits to show its ability to simulate the se-
quential circuits. Same Verilog circuits are given to Modelsim
for verifying the PLODE logic results.

The overview and capabilities of PLODE, the conversion
from Verilog to Spice, the simulation and analysis stages as well
as the single path mode of the tool and its GUI are explained in
Section 2. Section 3 gives the details of the experimental setup
and presents the results.

2. PLODE

2.1. Overview

As Fig. 1 shows, PLODE takes the circuit description in
structural Verilog, the input vectors and expected output vectors
as text files, the SCL cells as Spice subcircuits, the technology
file for the target process and Spice options like temperature,
reltol, etc. as its inputs.

The conversion of Verilog modules into Spice Decks is ex-
plained in Section 2.2. The simulation stage consisting of read-
ing the input vectors and supplying them to the circuit and
meanwhile collecting all results is in Section 2.3. Using the
results of the simulation stage PLODE performs analysis to ex-
tract all output delays as well as the logic values for each input.
This is called analysis stage and explained in Section 2.4. Path
extraction for single path delay computation is presented in Sec-
tion 2.5. Lastly, Section 2.6 presents the GUI of PLODE.



Figure 1. Overview of PLODE (top:inputs, bottom:outputs)

2.2. Conversion

PLODE converts the Verilog circuit into a graph structure
before generating the Spice deck. In this graph structure, each
logic cell, interconnect, primary input and primary output are
represented as a node. Fig. 2 shows the graph for a full adder.

Figure 2. Graph constructed for full adder

For hierarchical Verilog with module instantiations, the tool
provides two options for Verilog to Spice conversion: Graph-
joining and Spice-subcircuits. If the Graph-joining option is
selected, the hierarchical circuit is flattened into one level and
represented by one graph utilizing only the standard cells in the
SCL, similar to Fig. 2. If the Spice-subcircuits is selected, then
the hierarchy is preserved and each module has its own graph
structure. For a 4-bit adder example, two graphs would be con-
structed, one for full adder (Fig. 2) and one for 4bit adder
(Fig. 3). PLODE supports multiple levels of hierarchy, i.e.
nested module instantiations.

Figure 3. Graph constructed for 4bit adder when Spice-
subcircuits option is selected

After constructing the graph structure, Spice deck is syn-
thesized by converting each node into its Spice equivalent logic
cell or subcircuit. Other than the Verilog gate primitives, the
structural Verilog implementation can contain any type of logic
cell that the SCL supports like compound logic gates or multi-
plexers.

At the end of conversion stage, the resultant Spice deck con-
tains the Spice version of the digital circuit either in flattened or

hierarchical form and ready to be prepared for the simulation.

2.3. Simulation

The simulation preparation starts with the generation of in-
put lines. For that purpose, the user supplies the binary input
vectors as a text file. There is no limitation on the number of
input vectors. The time interval between two consecutive input
vectors and the value of the supply voltage must also be pro-
vided to the tool. If the circuit is a sequential circuit, the clock
period and the name of the clock are additionally given by the
user. Using all these, PLODE inserts all inputs as piece-wise
linear (PWL) voltage sources to the previously produced Spice
deck.

Other than time interval and supply voltage, PLODE GUI
allows the user to change any of 45 different options possible in
ngspice like temp, reltol, abstol, gmin etc. ngspice is called
for the resultant Spice deck to get all transistor level simulation
results. At the end of the simulation, supply current vs time and
output voltage vs time for each output are stored in files.

By default, ngspice writes all simulation results for all
time instances and all circuit nodes into computer memory.
For larger circuits, this quickly results in memory insufficiency.
For instance, after 150ns transient simulation of c3540 circuit,
ngspice was unable to further write to a 16GB memory because
it has already occupied the 15GB portion of it. To avoid that,
PLODE only saves the results of the output nodes to memory.
This is achieved by using save command. This command is
used to inform Spice simulator which node values will be stored
to memory. As a result, both the simulation duration and the
memory usage gets much better. Even for a larger circuit like
c7552, memory usage didn’t go above 300MB.

2.4. Analysis

The accuracy and speed of any digital circuit depends on
the functional (logical) result and the circuit delay. Therefore,
the analysis stage of PLODE aims at the delay detection and
capturing the logical output of the circuit and it does that at the
precision of Spice.

The first phase of the analysis is the detection of the signal
transition times. Transition time is the exact moment when a
signal transits through the half voltage, i.e. Vsupply/2. It can
be either high-to-low or low-to-high. In Spice extracted files,
only voltage-time pairs for each signal are recorded. In order to
extract the transition time, the closest voltage values to the half
voltage are detected first. However, even the closest voltage
values may not be exactly equal to the half voltage. At this
point, the tool applies a linear interpolation to detect the exact
half voltage transition time of the signal. For instance, assume
that the two consecutive voltage-time values closest to the half
voltage for an output node are (v1, t1) and (v2, t2).

tr time = (t2− t1)× abs(vhalf − v1)

abs(v2− v1)
+ t1 (1)

In this manner, all transition times for each input are ex-
tracted. Then, it takes the union of these to construct one array
holding all possible transition times realized by the inputs. This
enables the tool to be used for different input vector application
scenarios. These input transition times are used in logic and de-
lay computations. After recording all input transition times, it
does the same for each output signal and stores the transition
times of each output as a separate array.



For the computation of logic and delay, there is a problem
that must be taken into consideration: the glitches. An output
may have multiple transitions for one input transition, which
is known as glitch. If not taken into consideration, glitch may
result in both misleading functional test and delay results as well
as wrong clock rate decisions for sequential circuits. In order to
detect the stable output logic value and the correct delay, one
must find the last transition at the output after a change at the
input.

Fig. 4 shows the voltage-time graph for an output node of
c5315 from ISCAS’85 benchmark. Input transitions occur with
10ns intervals starting from 10ns. For the second input transi-
tion at 20ns, the output first makes a small glitch but stays at
high and then at about 27.5ns, it makes a high to low transition.
In terms of logic value and delay result, the last transition at
27.5ns must be taken as reference. A similar situation exists at
the fifth transition (after 50ns).

Figure 4. Voltage-time graph for N8075 output of c5315
(drawn by PLODE)

PLODE analyzes each output and detects the last output
transition before the next input comes. The output value is set
as the logic value after that last transition. For that particular
example in Fig. 4, the tool accurately computes the logic values
as {1, 1, 0, 1, 1, 1, 0, 0, 1, 1}. The delay is also computed by
using that last transition and taking the difference from the input
transition time. Again for N8075 of c5315, the delays plotted
by the tool are shown in Fig. 5. It shows that PLODE takes
into account all the glitches in Fig. 4 and computes the delay
accordingly.

Figure 5. Delay (ns) per transition for N8075 (drawn by
PLODE)

At the end of the analysis, PLODE extracts the resultant
logic value of each output for each input vector. These logic
values are written to a text and csv file. If the user supplies the
expected outputs to PLODE as text file, it compares the actual
logic values resulted from the analysis with the expected ones.
It detects the number of mismatches and writes a comparison
report. At that report, the actual and expected output differences
with the corresponding transition numbers are listed for further
analysis.

In terms of delay analysis results, a csv file containing all
delays for all transitions and outputs is generated. At that csv
file, the maximum delay and the corresponding output node and
the transition number that is responsible from that delay are
recorded too.

2.5. Single Path Mode

In most cases, the delay of a particular path, especially the
critical path, is required to determine the speed of a combina-
tional circuit or to define the clock rate for a sequential circuit.
But sensitizing a specific path is a difficult task, which can be
both complex and requires the gate delays a priori. For that pur-
pose, PLODE has a path extraction module, which can build
up a new circuit consisting of only the desired path and its side
gates.

GUI takes the Verilog of the original circuit and the id of
each interconnect on the desired path. Then, it travels in the
original Verilog to get only the desired path components and
remove all others. The side inputs of AND or NAND gates are
made 1 and the side inputs of OR and NOR gates are made 0,
so that the input pulse propagates through the desired path.

Figure 6. Circuit schematic for original c17 circuit

Fig. 6 shows the c17 circuit schematic from ISCAS’85
benchmark. Let us assume that the user wants to find the delay
of path {N6, N11, N19, N23}. PLODE constructs a new Ver-
ilog file, whose schematic is as shown in Fig. 7. After this con-
struction, it simulates the circuit by sending a pulse from N6,
which has no choice but propagate through the desired path.
The resultant delays are high-to-low and low-to-high delays for
that path. It is important to note that the NAND gate in Fig. 6
with inputs N2 and N11 is not removed due to its direct effect
on delay.

Figure 7. Schematic of the PLODE constructed Verilog

Using single path mode, any path in the circuit can be simu-
lated for accurate path delay results without any search for input
pairs that sensitizes that path. This can be very helpful for the
verification of path delay based methods in different path de-
lay based research areas like hardware security [11], statistical
timing analysis [12], etc.

2.6. GUI and Visualization

Fig. 8 shows the PLODE GUI after used for the sim-
ulation and analysis of c432 circuit from ISCAS’85 bench-



mark. All desired inputs for conversion, simulation and analy-
sis stages are given through that GUI. The stages are started by
using the Convert, Run Simulation and Analyze & Plot
Logic/Delay buttons. Using the Compare Results button,
the number of correct and wrong outputs are presented and a
text report as explained in Section 2.4 is prepared.

Figure 8. PLODE GUI after executed for c432

3. Experiments & Verification of PLODE
PLODE is written in C++ on Qt. The experiments are per-

formed on an Intel i5-4670K 3.4GHz CPU with 16GB RAM
and Opensuse Leap 15.2 operating system. In order to ver-
ify PLODE, we implement Verilog testbench files and perform
logic simulations on Modelsim for verification. For each circuit,
we supply the structural Verilog circuit [13] and 10 randomly
generated input vectors to Modelsim. The resultant Modelsim
outputs are written to text files. Then, the same Verilog files
and inputs of the test circuits are given to PLODE. For the ex-
periments, 45nm open cell library [14] and 45nm technology
model [15] are used.

Table 1. PLODE experiment timings in seconds (10ns interval)

Conversion Simulation Analysis Total
c432 0.3 134.3 0.3 134.9
c499 0.6 393.6 0.5 394.7
c880 1.6 516.3 0.6 518.5
c1355 3.2 643.3 0.5 647.0
c1908 7.3 1290.3 0.4 1297.9
c2670 16.3 2267.2 2.6 2286.1
c3540 27.8 3192.5 0.5 3220.8
c5315 56.7 4912.1 2.1 4970.9
c6288 57.6 5431.8 0.5 5489.8
c7552 178.5 6660.9 2.2 6841.6

Table 1 shows the run-times for each stage of PLODE in
seconds. The simulation stage includes the Spice simulation,
therefore it is by far the slowest stage. Actually, if save com-
mand was not used the simulation duration would be much
more. For instance, for c2670 the duration would become 4827
seconds instead of 2267.

PLODE analysis results for 10ns interval experiments are
shown in Table 2. Using PLODE GUI, we compared the
computed logic values based on Spice simulations, i.e. actual
outputs, with the expected output values that are generated by
Modelsim. From the total 10 input vectors, the ones that re-
sult in same output vectors with Modelsim are called correct,

Table 2. PLODE analysis results (10ns interval)

Correct Wrong Delay Output Tr.
c432 10 0 1.6 N431 tr[3]
c499 10 0 0.4 N728 tr[1]
c880 10 0 2.4 N879 tr[2]
c1355 10 0 0.1 G1331 tr[4]
c1908 10 0 0.4 N2891 tr[1]
c2670 7 3 6.6 N3851 tr[1]
c3540 9 1 2.0 N5002 tr[1]
c5315 9 1 7.8 N7465 tr[2]
c6288 10 0 2.1 N6160 tr[7]
c7552 3 7 8.0 N11334 tr[5]

the output vectors different from Modelsim are called wrong.
The difference may be in one bit or more. As the circuits get
more complex, the delays increase and the 10ns input transition
time interval starts to become insufficient for outputs to stabi-
lize. Therefore, only in c2670, c3540, c5315 and c7552 the ex-
pected outputs and the actual ones do not perfectly match. Ac-
cording to the PLODE results, the researcher can deduce that
these circuits are not suitable to drive with 10ns intervals be-
tween consecutive inputs. This table also shows other PLODE
results: the max delay of the circuit in ns, which output node
and which transition cause that delay respectively.

Table 3. PLODE analysis results (100ns interval)

Correct Wrong Delay Output Tr.
c2670 10 0 65.6 N3851 tr[8]
c3540 10 0 60.1 N5360 tr[1]
c5315 10 0 67.0 N8128 tr[6]
c7552 10 0 60.5 N10908 tr[4]

As an example case, we investigate c2670 where 3 outputs
were different than the expected one. By looking at PLODE
comparison report, it can be seen that there is only one output
that causes the error for the 3 results. This output is N3851.
We repeated the PLODE experiment for all circuits resulting at
least one wrong output vector. The results for the 100ns inter-
val experiment are summarized in Table 3. As can be seen from
the table, all PLODE results become identical with Modelsim
outputs when 100ns interval is used instead of 10ns. This ta-
ble shows that the cause for wrong outputs is the small time
interval in between inputs, because each circuit in the table has
maximum delay above 10ns. The maximum delay for c2670 is
65.6 and belongs to N3851, which was also the cause for the
error in 10ns experiment of c2670.

In order to test PLODE on sequential circuits, s1423 and
s13207 from ISCAS’89 benchmark are used. The conversion,
simulation and analysis durations are shown in Table 4. For
s1423 and s13207, respectively 50 and 10 input vectors are
generated randomly and given in 5ns intervals. The clock pe-
riod is also set as 5ns. Thus, a new input vector is given syn-
chronously with the new clock cycle. At the end of the exper-
iments, all PLODE outputs are compatible with Modelsim re-
sults for s1423, resulting in 100% match. On the other hand,
s13207 has 152 outputs. The comparison report of PLODE



presents the output bits causing the difference for each output.
Only two output bits, namely bit-24 and bit-29 among 152 bits
cause the difference. From this report, we can deduce that 5ns
clock cycle is not enough for output bit-24 and bit-29 to get
stabilized at the expected results.

Table 4. Duration of PLODE stages in seconds

Conversion Simulation Analysis Total
s1423 5.2 790 0.1 795.2
s13207 649.8 24655 0.8 25305.6

PLODE can also extract a path including all side gates and
simulate it alone to compute its delay. To test single path mode
of PLODE, we assumed two paths from 32 bit carry ripple adder
(A + B = S). The first path is the critical path of the circuit that
starts with A0 and ends at S31. Second path starts with A0 again,
but end at S16. To sensitize the paths the carry propagation must
be ignited until the end of the path.

We first give the path sensitizing input vectors to full 32-bit
adder circuit and PLODE computes the delay for S31 and S16.
Then, we compute path delays by using PLODE single path
mode, where the path is extracted and simulated alone without
the need for sensitizing input vectors. The resultant path delays
are summarized in Table 5. The first column belongs to the full
circuit simulation and the second column shows the single path
mode delays of PLODE. As can be seen from the table, there is
only a minimal (about 8%) difference in between.

Table 5. Path delays computed with path sensitization and sin-
gle path mode of PLODE

c1908 Path Full Circuit Single Path Difference
a0 - s31 2.31 2.5 %8.2
a0 - s16 1.25 1.35 %8.0

As a last experiment in order to test the hierarchy support
of PLODE, we implement hierarchical Verilog design of 32-
bit adder. The top module is named adder 32bit. It instan-
tiates two adder 16bit modules, each of which instantiates
four adder 4bit modules. Each adder 4bit module (Fig. 3)
utilizes four full adder modules (Fig. 2). The adder 32bit
design is tested with 100 randomly generated inputs on Mod-
elsim and the corresponding 100 output vectors are recorded
for comparison. Then, this circuit is given to PLODE with
Graph-joining and Spice-subcircuits options separately. For
both Graph-joining and Spice-subcircuits, all resultant 100 out-
put vectors come out to be equal to the ones that Modelsim pro-
duced, which verifies the hierarchy support of the tool.

4. Conclusion
PLODE [16] is a Spice based open source tool that can per-

form and visualize precise functional and timing analysis of the
circuits written in structural Verilog. It can be improved in sev-
eral ways. It can be accompanied by ATPG algorithms to sup-
ply input vectors sensitizing the desired paths, can be combined
with a synthesis tool to be able to take behavioral Verilog as
input and optimize the circuit. The statistical approaches like

Monte Carlo method can be used to improve the tool further for
statistical timing and power computations.

5. References
[1] Laurence W. Nagel and D.O. Pederson. Spice (simulation

program with integrated circuit emphasis). Technical Re-
port UCB/ERL M382, EECS Department, University of
California, Berkeley, Apr 1973.

[2] NgSpice Circuit Simulator. http://ngspice.
sourceforge.net/.

[3] Modelsim HDL Simulator, Last accessed: 05/2021.
https://eda.sw.siemens.com/en-US/ic/
modelsim/.

[4] Carl Burch. Logisim: A graphical system for logic circuit
design and simulation. Journal on Educational Resources
in Computing (JERIC), 2(1):5–16, 2002.

[5] Stuart Brorson. Circuit design on your linux box using
geda. Linux Journal, 2006(141):7, 2006.

[6] Robert K Brayton, Gary D Hachtel, Alberto Sangiovanni-
Vincentelli, Fabio Somenzi, Adnan Aziz, Szu-Tsung
Cheng, Stephen Edwards, Sunil Khatri, Yuji Kukimoto,
Abelardo Pardo, et al. Vis: A system for verification and
synthesis. In International conference on computer aided
verification, pages 428–432. Springer, 1996.

[7] Johann Glaser Clifford Wolf and Johannes Kepler. Yosys-
a free verilog synthesis suite. In I21st Austrian Workshop
on Microelectronics (Austrochip), 2013.

[8] Peter Jamieson, Kenneth B Kent, Farnaz Gharibian, and
Lesley Shannon. Odin ii-an open-source verilog hdl syn-
thesis tool for cad research. In 2010 18th IEEE Annual
International Symposium on Field-Programmable Custom
Computing Machines, pages 149–156. IEEE, 2010.

[9] F Brglez and H Fujiwara. A neutral netlist of 10 com-
binational benchmark circuits and a target translator into
fortran. In IEEE Int’l Symp. on Circuits and Systems (IS-
CAS), pages 659–662, 1985.

[10] Franc Brglez, David Bryan, and Krzysztof Kozminski.
Combinational profiles of sequential benchmark circuits.
In IEEE International Symposium on Circuits and Sys-
tems,, pages 1929–1934. IEEE, 1989.

[11] Yier Jin and Yiorgos Makris. Hardware trojan detection
using path delay fingerprint. In 2008 IEEE International
workshop on hardware-oriented security and trust, pages
51–57. IEEE, 2008.

[12] Jing-Jia Liou, Angela Krstic, Li-C Wang, and Kwang-
Ting Cheng. False-path-aware statistical timing analysis
and efficient path selection for delay testing and timing
validation. In Proceedings of the 39th annual Design Au-
tomation Conference, pages 566–569, 2002.

[13] Modelsim HDL Simulator, Last accessed: 05/2021.
http://pld.ttu.ee/~maksim/benchmarks/.

[14] NanGate 45nm Open Cell Library.
http://www.nangate.com/.

[15] Predictive Technology Model, 45nm model file.
http://ptm.asu.edu/.

[16] PLODE: Precision Logic and Delay Simulator Source
Code, Last accessed: 05/2021. https://github.com/
ic-cad/plode.


